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Abstract

This paper presents an optimal portfolio balancing strategy in discrete time for a
crra investor, such as a pension fund, who invests only on one risk-free asset and one
risky asset where both fixed and (linear) proportional transaction costs exist. Based
on our theoretical results, we provide a heuristic that can generate an approximate
solution to this problem while considering periodic (negative or positive) changes in
net contribution, which occurs often for pension funds. According to our computational
results, our optimal asset allocation strategies match actual asset allocation schemes of
some internationally renowned pension funds. Furthermore, we also learned that net
contribution and liquidity have significant impacts on an optimal asset allocation of a
pension fund.

1 Introduction

While experiencing one of the most severe crises in the financial market around 2008 since
the Great Depression, it has been noticed that roughly there are two groups of internation-
ally renowned pension service providers (psps). The first group has not altered the asset
allocation considerably while the other has been actively adjusted the mix of their portfolios
so as to adapt into adverse market conditions. This paper is motivated by this observation
and focuses on investment strategies of these psps. Specifically this research aims to come
up with theoretical asset allocation schemes to examine the optimal investment strategy of
a few large pension funds in the world.

In this paper, we suggest an optimal portfolio balancing framework in discrete time for
pension funds investing only in one risk-free asset and one risky asset paying both propor-
tional and fixed transaction costs. We also provide multi-period optimal portfolio balancing
strategies while considering periodic (negative or positive) cash flows into funds at the begin-
ning of each period. For pension funds, these cash flows are usually the net contribution: the
difference between the contributions from participating members and the annuity (benefits)
payments to members. This research also examine the impact of market liquidity on the
optimal asset portfolio strategies of large pension funds using the bid-ask spreads and the
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proportional transaction cost variations, even though bid-ask spread could understate the
true transaction costs for large investors like pension funds (Marshall (2006)).

Portfolio optimization is one of the most studied topics in finance. Following the footsteps
of seminal papers Merton (1969, 1971), Cvitanic and Karatzas (1992), Xu and Shreve (1992),
and He and Pearson (1993) considered portfolio optimization problems with some constraints
on the strategies. Davis and Norman (1990), Magill and Constantinides (1976), and Taksar,
Klass, and Assaf (1988) considered a proportional transaction cost to make the problem more
realistic. Constantinides (1979) showed that no-trading region is a convex cone for an investor
with a power utility and a proportional transaction cost. Later, Constantinides (1986)
provided an approximate solution to this problem. Eastham and Hastings (1988) made
portfolio optimization problem more realistic by considering both fixed and proportional
transaction costs in their impulse control approach. Korn (1998) further improved the work
of Eastham and Hastings (1988) by utilizing an optimal stopping criteria method. Gennotte
and Jung (1994) numerically identified the approximate boundary values of no-trading region
for an portfolio optimization problem with a finite terminal date.

While studies regarding optimal portfolio rebalancing in continuous-time abound, the
research on portfolio rebalancing in discrete-time is scarce although it has more practical
applications. Boyle and Lin (1997) presented a closed-form solution to the finite horizon
problem when there is a proportional transaction cost. (Let us refer to this problem as ptc.)
We add a fixed transaction cost factor in the model and compare our work to the result of
Boyle and Lin (1997) showing how the shape of no-trading region changes. In a continuous
time model, such as Korn (1998), a fixed transaction cost can be easily incorporated because
it can be assumed that a fixed transaction cost is incurred whenever an investor tries to
rebalance his/her portfolio.

However, incorporating a fixed transaction cost into a portfolio optimization problem in
discrete time is more complicated because an investor may or may not rebalance his/her
portfolio at a certain period, which makes a fixed cost as a binary variable. When a binary
variable exists, a terminal wealth maximization problem comes to have a discontinuous
point where the expected terminal wealth function is not differentiable. We tackle this
problem by separating the problem into two parts: one that assumes no trading and the
other that assumes a positive amount of trading a risky asset. In addition to presenting an
explicit strategy for one-period optimal portfolio rebalancing problem with both fixed and
proportional cost, we introduce a (brute-force) heuristic that finds an approximate solution
for multi-period portfolio optimization problem by extending the one-period optimal strategy.

Another important factor that affects optimal asset allocation is liquidity of the risky
asset (or stock market). According to the research on liquidity measures by Sarr and Ly-
bek (2002), the types of liquidity measures include the followings; transaction cost mea-
sures, volume-based measures, price-based measures, market-impact measures, and other
econometric techniques. According to their analysis, the main factors composing liquidity
measures are bid-ask spreads, turnover ratios, and price impact measures.

Meanwhile, Plerou, Gopikrishnan, and Stanley (2005) analyzes how to explain the mar-
ket liquidity, using bid-ask spread. Also, Wei and Zheng (2010) measure the liquidity of
individual equity options by the bid-ask spread. Bid-ask spread can be expressed as the ab-
solute value or the ratio of a gap between the bid price and ask price. For example, Marshall
and Young (2003) calculated the bid-ask spread using every Wednesday’s closing bid and ask
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prices. According to the research by Marshall (2006), the order based measure such as the
bid-ask spread is effective for measuring the liquidity of small investors but, is not perfect
for measuring the liquidity of larger investors. Marshall (2006) insists that weighted order
value can make up for the weak points of traditional liquidity proxies by incorporating bid-
ask spreads and market depth. Weighted order value is one of the liquidity proxies, already
used by Aitken and Comerton (2003). This paper takes bid-ask spreads as a measure of
the market liquidity into account and computes variations of proportional transaction cost
according to the changes in bid-ask spreads. Moreover, it analyzes how the market liquidity
affects optimal asset portfolio strategies.

The contribution of paper is summarized as follow. Technically, under discrete time frame
work, this paper is the first research on the strategies of optimal asset portfolio, considering
both fixed transaction cost and proportional transaction cost. (Let us refer to this problem
as fptc.) Using the frame work, the asset allocation strategies of a few world major pension
funds are analyzed and compared while taking their net contributions, the gap between
contributions paid by pension members and annuity payments spending for beneficiaries,
into account. The changeable degree of liquidity according to market situation is also one
of our considerations solving the optimal pension management problem. Surprisingly, this
research indicates that actual investment strategies by a few large pension providers are very
close to the theoretically optimal investment strategies suggested by this research, which
implies that our model can be useful in terms of actual pension fund management.

This paper is divided into six sections. The research motivation and the basic information
about the psps of our interest are provided in section 2. To solve the proposed research
problems, our models are introduced in section 3. Using the model, optimal solutions are
provided in section 4. First ptc problem is analyzed in detail in our own terms. Then, we
extend the theoretical properties of ptc to come up with an optimal trading strategy for
fptc problem. The results of our research are displayed in the three subsections of section
5. subsection 5.1 discusses a heuristic (a recursive algorithm) that generates an approximate
optimal solution for a multi-period fptc problem. In subsection 5.2, we describe how changes
in parameters affect the no-trading region (ntr) for the fptc problem. We apply our asset
allocation framework to several world renowned pension funds and compare our theoretical
asset allocation schemes to their actual asset allocations in subsection 5.3. Finally, section
6 concludes the paper with a few suggestions for future research.

2 Motivation: psps of interest

While surveying investment strategies of world renowned psps, during the recent financial
market crisis between 2008 and 2009 , we made an interesting observation. We discovered
that some psps actively adjusted asset allocations while the others held onto their existing
asset allocations schemes. Through efforts of delving into this issue, we learned that some
factors, such as liquidity, transaction costs, and changes in net contribution, have significant
impacts on psps asset allocation policies. In this paper we provide some answers for this
problem while taking above-mentioned factors into account.

Information about psps of our interest is in Table 1 including their names, abbreviated
names, base countries of their operations, estimated assets in billion USD and valuation
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dates of their assets.

Table 1: Analyzed psps
Name Abbrev. Country Net asset (Mill. USD) Valuation date

CalPERS CALP Unites States 241,761 Jun 2011
New York State and

Local Retirement System
NYSLR United States 149,548 March 2011

Avon Pension Fund AVON United Kingdom 4,098 March 2011
Första AP-fonden FAPF Sweden 33,883 December 2011

National Pension Service NPS South Korea 312,934 December 2011

Table 2: World Stock Market Indices
Year Spread Scaled Volatility

2002 0.27 4.02 19.30 %
2003 0.18 2.66 12.26 %
2004 0.14 2.03 8.19 %
2005 0.15 2.15 8.19 %
2006 0.15 2.13 7.45 %
2007 0.16 2.36 9.33 %
2008 0.23 3.36 23.63 %
2009 0.09 1.36 23.27 %
2010 0.08 1.13 20.60 %
2011 0.07 1.00 17.97 %

Table 2 include world stock market indices such as bid-ask spread (Spread), Scaled
spread(Scaled) and stock market volatility (or σ). We calculated ‘Scaled’ by dividing ‘Spread’
with the smallest spread between 2002 and 2011, which is 0.07 (Spread of year 2011). Since
higher ‘Spread’ indicates higher trading cost, we will assume that trading cost increases as
‘Scaled’ does.

From Table 2, we can see that world stock market volatility varied between 7.45% and
23.64% between 2002∼2011. To reflect volatility changes of stock market, we ran tests using
different values of σ, which are 10%, 15% and 20%.

During the same period, ‘Scaled’ changed from 1 to 4.02. Assuming that larger spread is
an indication of larger proportional trading cost, we tried 0.5%, 1.5% and 2.5% for possible
values of k1 and k2. (Throughout this paper, we assume that k1 and k2 have the same value.)
Again, as we stated in section 1, it is difficult to say that proportional trading cost increases
in proportional to the spread and these parameter changes are tried so that we could test
some probable cases.

Table 7∼11, actual asset allocations and net cash flows from contributions and benefits
of psps of our interest. Columns in these tables include their asset allocations in stocks (risk
asset) and bonds(risk-free asset), members’ contributions, and benefits payments.

Currency units for each table are CALP(thousand USD), NYSLR(thousand USD), AVON
(thousand LB), FAPF(million SEK), and NPS(million KRW). In actual investment opera-
tion, there are no true risk-free assets.

In Tables 7∼11, we considered all bonds as a risk-free asset and all stocks as a risky
asset. Although some government treasury bills have little credit risk, it is still possible to
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lose money from these bonds when their market value drops. Yet, we considered all the
bonds as risk-free assets because most psps usually invest only on bonds with decent credit
ratings and their default ratio is very low.

Most asset values In Tables 7∼11 are market values. In these tables, we can see that
there had been a big drop in asset values between 2008 and 2010 due to a financial market
crash in 2008 and following economic crisis. During this period, asset values of 5 psps show
common and distinct changes. One common change is the depreciation of risky asset values.
In addition, most psps risk-free asset values also dropped with an exception of NPS, possibly
due to a withdrawal rush. (See sudden drops in net contribution of CALP, NYSLR, and
FAPF.) Decrease in risky asset values during this period can be explained by a few factors
such as stock market crash and liquidation of stocks, which might have been mitigated by
fund managers efforts to defend asset value depreciation.

Net contributions of these psps are CALP (around -2%), NYSLR (around -4%), AVON
(from around negative 1% in 2000, became 1% recently), FAPF(from 2% in 2002, turned
negative in 2009) and NPS(close to zero). As we mentioned above, some psps net con-
tributions fluctuated as stock market crashed. However, net contribution of NPS showed
almost no change (NPS membeship is mandatory in Korea) and AVON showed an increase
in membership contributions since 2006.

3 The model

First, we assume that two classes of asset are traded in the financial market: a risky asset (or
a stock) and a risk-free asset (or a bond). The one-period return of the risk-free asset is R.
We assume there are two possible outcomes of one-period return of the risky asset, u and d
(0 < d < R < u) with probability πu and πd (0 ≤ πu, πd ≤ 1, πu+πd = 1). Let zt be the price
process of the risky asset. We also assume the financial market has market frictions, hence,
market participant pays fixed and proportional transaction costs when selling or purchasing
the risky asset. The per-period fixed cost is denoted by K and the per-period proportional
transaction costs for sales (purchases) is k1 (k2, respectively).

The investor considered in this paper is a pension fund manager who has the following
constant relative risk aversion (CRRA)-type utility preference for wealth:

u(w) :=
w1−γ

1− γ
, (1)

where γ is the coefficient of relative risk aversion and satisfies γ > 0 and γ 6= 1.
We denote xt (yt) as a pair of dollar amounts invested in the risk-free (risky, respectively)

asset at time t (t ∈ {0, 1, . . . , T}). We assume that positive amount of the risky asset can
be traded at time t only when the portfolio at time (t + 1), (xt+1, yt+1), stays in a solvency
region, which is defined as

S := {(x, y)| x+ (1− k1)y −K ≥ 0, y ≥ 0}.

Note that the first condition reflects the assumption that the liquidated wealth should be
positive when y > 0 and the second stands for the short-sale constraint of the risky asset.
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The fund manager considered in our paper want to maximize her expected utility for
wealth at the final time T ,

E[u(xT + yT )],

by controlling their investment amount in the risky asset. Here, E[·] is the expectation under
the probabilities πu and πd.

We denote 4− (4+) as a dollar amount of the risky asset for sales (purchases, respec-
tively) at time t. (For convenience sake, we do not mark time variable t when utilizing 4−
and 4+.) Then, we get the following relationships between asset holdings at time t and
those at time (t+ 1):

xt+1 =


R(xt + (1− k1)4− −K),where 4− > 0
R(xt − (1 + k2)4+ −K),where 4+ > 0
Rxt,where 4− = 0 and 4+ = 0

and

yt+1 =


(yt −4−)zt,where 4− > 0
(yt +4+)zt,where 4+ > 0
yt,where 4− = 0 and 4+ = 0.

4 Optimal pension fund management

In this section we show the one-period optimal trading strategy for our problem.
We define fptc sell and buy problems at time k (0 ≤ k < T ) as follow:

max f−(4−;xk, yk)
s.t. 4− ≥ 0, (xk+1, yk+1) ∈ S,

max f+(4+;xk, yk)
s.t. 4+ ≥ 0, (xk+1, yk+1) ∈ S,

where
f−(4−;xk, yk) := πuu(xkR + yku−KR + ((1− k1)R− u)4−)

+πdu(xkR + ykd−KR + ((1− k1)R− d)4−)
(2)

and
f+(4+;xk, yk) := πuu(xkR + yku−KR + (−(1 + k2)R + u)4+)

+πdu(xkR + ykd−KR + (−(1 + k2)R + d)4+).
(3)

Our approach for solving the one-period problem is to find the optimal strategies 4∗−
and 4∗+ for the sell and buy problems and pick the strategy which make the expected utility
have maximum value. In other words, the optimal investment strategy of our one-period
problem is the strategy which make us attain the maximum of

max{f−(4∗−;x0, y0), f+(4∗+;x0, y0), f0(0;x0, y0)}

where
f0(0;xk, yk) := πuu(xkR + yku) + πdu(xkR + ykd). (4)

Notice that f0 represent the expected utility where no transaction occurs at time k.
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We know that ptc problem is fptc problem where the fixed transaction cost K is zero.
Let us define g− (g+ and g0) as f− (f+ and f0, respectively) where K = 0. As a result, the
one-period ptc problem can be stated as the problem to find

max{g−(4∗−;x0, y0), g+(4∗+;x0, y0), g0(0;x0, y0)}.

Throughout this paper, we will often work with the sell-problem only. Analysis of the
buy-problem will be omitted because it can be regarded as a mirror-image of the sell problem.

4.1 Analysis of ptc

First, we can check the optimal buy and sell strategies 4∗− and 4∗+ satisfy

w1 =
xkR + yku+ ((1− k1)R− u)4∗−
xkR + ykd+ ((1− k1)R− d)4∗−

(5)

and

w2 =
xkR + yku+ (−(1 + k2)R + u)4∗+
xkR + ykd+ (−(1 + k2)R + d)4∗+

, (6)

where w1 and w2 are defined as

w1 :=

(
−πu((1− k1)R− u)

πd((1− k1)R− d)

)γ−1

, w2 :=

(
−πu((−1 + k2)R + u)

πd(−(1 + k2)R + d)

)γ−1

. (7)

Note that (5) and (6) are equations and (7) are definitions. The amounts w1 and w2

play crucial roles in our analyses. As you can see in (7), w1 and w2 are constants that do
not involve xt and yt. In (5), the nominator (xkR + yku + ((1 − k1)R − u)4∗−) and the
denominator (xkR + ykd + ((1− k1)R − d)4∗−) are wealth levels of the portfolio depending
on the state of the market (up or down) after rebalancing the portfolio with 4−.

In other words, the ptc sell problem simply balances x and y using 4 so that the ratio
of the up-market portfolio value (xkR + yku + ((1 − k1)R − u)4∗−) and the down-market
portfolio value (xkR+ ykd+ ((1− k1)R− d)4∗−) is w1. To reflect the role of w1 and w2, we
will refer to them as portfolio balancing ratios.

Now, suppose that we have a pair (xi, yi) whose optimal 4+ (or 4−) is 0. Then, (xi, yi)
is a pair that does not require rebalancing. From the defintion of (5) and (6) (x, y) pairs
whose optimal 4 is 0 are on the following lines

w1 =
xkR + yku

xkR + ykd
, w2 =

xkR + yku

xkR + ykd
. (8)

Let us call the equations in (8) as (8.1)(left) and (8.2)(right).
Rearranging (8.1) or (8.2), we get

y =
R(w1 − 1)

u− w1d
x, y =

R(w2 − 1)

u− w2d
x. (9)

Let us refer to these lines as (9.1) and (9.2). Since we assume that (x, y) stays in S, (9.1)
and (9.2) make sense only when

0 ≤ w1 ≤ u/d, 0 ≤ w2 ≤ u/d.

Note that two equations in (8) form two distinct lines in terms of (xk, yk) given w1 and w2.
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Lemma 4.1. If a given portfolio (xk, yk) satisfies (8.1) or (8.2), it does not need rebalancing.

Proof. If (xk, yk) satisfies (8.1), 4− = 0 and if (xk, yk) satisfies (8.2), 4+ = 0. Therefore,
(xk, yk) does not require rebalancing in either cases.

Before we proceed, let us introduce a property of w1 and w2.

Lemma 4.2. Suppose that k = k1 = k2. Then w1 ≥ w2.

Proof. Since x1/γ is a monotonically increasing function, we have x1/γ ≥ y1/γ if and only if
x ≥ y. Therefore w1 ≥ w2 if and only if

−πu((1− k1)R− u)

πd((1− k1)R− d)
≥ −πu((−1 + k2)R + u)

πd(−(1 + k2)R + d)
. (10)

(10) is true because it can be reduced to d ≤ u. Hence, w1 ≥ w2.

From (9.1) and (9.2), we can see that they meet at (x, y) = (0, 0). When combine this fact
with lemma 4.2, we can see that (9.1) and is above the line (9.2) in S. (R(w1−1)/(u−w1d) ≥
R(w2 − 1)/(u−w2d) when w1 ≥ w2.) Based on arguments so far, we can see that (9.1) and
(9.2) separates S into 3 parts; sell-region, ntr, and buy-region.

Let us define 4− that satisfies (5) as 4∗− and 4+ that satisfies (6) as 4∗+, respectively.
The following lemma is used to show that the sign of 4∗− changes depending on the location
of an (x, y) in S.

Lemma 4.3.
4∗− ≥ 0,when (x, y) is on the upper left of (9.1)
4∗− = 0, otherwise.

4∗+ ≥ 0,when (x, y) is on the lower right of (9.2)
4∗0 = 0, otherwise.

Proof. We solve 4∗−’s case only. 4∗+’s case is a mirror image. Suppose that (x1, y1) is on
the upper left of (9.1). Then, (x1, y1) can be written as (x0, y0 +α) where α ≥ 0 and (x0, y0)
satisfies (9.1). From (5) we have

w1(x0R + y0d+ ((1− k1)R− d)4∗−) + αw1d = x0R + y0u−KR((1− k1)R− u)4∗−) + αu.

Since (x0, y0) satisfies (9.1), we have

w1(x0R + y0d) = x0R + y0u.

Subtracting these two equations, we get

w1((1− k1)R− d)4∗− +αw1d = ((1− k1)R− u)4∗− +αu.

Rearranging the equation above, we get

4∗− =
α(u− w1d)

w1((1− k1)R− d)− ((1− k1)R− u)
≥ 0.

Therefore, 4∗− ≥ 0,when (x, y) is on the upper left of (9.1). The rest of the lemma can be
proven using similar arguments.
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Lemma 4.3 indicates that 4∗− > 0 and 4∗+ > 0 cannot happen simultaneously.

Lemma 4.4. g−(4−) and g+(4+) are concave functions with respect to 4− and 4+ within
S.

Proof.

g′′−(4−) := −γπu((1− k1)R− u)2(xkR + yku+ ((1− k1)R− u)4−)−γ−1

−γπd((1− k1)R− d)2(xkR + ykd+ ((1− k1)R− d)4−)γ−1

g′′+(4+) := −γπu(−(1 + k2)R + u)2(xkR + yku+ (−(1 + k2)R + u)4+)−γ−1

−γπd(−(1 + k2)R + d)2(xkR + ykd+ (−(1 + k2)R + d)4+)γ−1

Second derivatives of g−(4−) and g+(4+) are negative within S. Therefore, g−(4−) and
g+(4+) are concave functions.

Since g−(4) and g+(4) are concave functions, they have unique optimums at 4∗− and
4∗+, respectively. Furthermore, when 4− = 0 and 4+ = 0, we have g−(4−) − g−(0) = 0
and g+(4+)− g−(0) = 0. Putting these facts together, we have corollary 4.5.

Corollary 4.5. Let us define functions θ−(4−) := g−(4−)−g−(0) and θ+(4+) := g+(4+)−
g+(0). Then θ−(4−) and θ+(4+) are concave within S and they go through the origin.

Proof. It follows naturally from lemma 4.4 and

θ−(0) := g−(0)− g−(0) = 0, θ+(0) := g+(0)− g+(0) = 0.

Now, let us define ntr of the ptc sell-problem and buy-problems as follow.

ΘN
− (xk, yk) := {4− : θ−(4−) < 0,4− ≤ 4∗−},

ΘN
+ (xk, yk) := {4+ : θ+(4+) < 0,4+ ≤ 4∗+}.

Corollary 4.6. θ−(4−) and θ+(4+) are concave functions when 4− and 4+ are within S.

Proof. θ−(4−) (θ+(4+)) is different from g−(4−) (g+(4+)) by a constant. Proof is the
same as that of lemma 4.4.

Based on observations so far, we have the following lemma.

Lemma 4.7. When 4∗− > 0 (4∗+ > 0), ΘN
− (x, y) ≡ Ø (ΘN

+ (x, y) ≡ Ø).

Proof. θ−(0) = 0 and θ+(0) = 0. θ−(4−) = 0 (θ+(4+ = 0)) achieves a unique optimum
at 4− = 4∗− (4+ = 4∗+) satisfying θ−(0) ≤ θ−(4∗−) (θ+(0) ≤ θ+(4∗+)). Since θ−(4−)
(θ+(4+)) is increasing in the interval [0,4∗−] ([0,4∗+]), ΘN

− (x, y) (ΘN
+ (x, y)) is an empty set

when 4∗− > 0 (4∗+ > 0).

As you can see in lemma 4.7,4∗− (4∗+) does not fall into ntr whenever4∗− > 0 (4∗+ > 0).
This lemma indicates that when 4∗− > 0 (4∗+ > 0), ntr of the sell (buy) problem is empty.
In other words, if we get 4∗− > 0 (4∗+ > 0) for a specific pair of (x, y) it is optimal to sell
(buy) 4∗− (4∗+) of a risky asset. Theorem 4.8 summarizes the optimal trading policy for
one-period ptc.
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Theorem 4.8. The following is an optimal strategy for ptc problem.

1. Given (x, y), calculate 4∗− and 4∗+.

2. If 4∗− > 0, liquidate 4∗− of risky asset.

3. If 4∗+ > 0, purchase 4∗+ of risky asset.

4. Otherwise, do nothing.

Proof. Based on lemma 4.3, only 3 mutually exclusive cases can happen.

Case 1: 4∗− > 0. (Sell)

Case 2: 4∗+ > 0. (Buy)

Case 3: 4∗− = 4∗+ = 0. (Do nothing.)

When4∗− > 0 (4∗+ > 0) happens, selling4∗− > 0 (buying4∗+) is optimal because ΘN
− (xk, yk)

(ΘN
+ (xk, yk))is empty and ptc sell-problem (buy-problem) is concave. Therefore, taking

above steps is an optimal strategy.

In subsection 4.2 we construct an optimal strategy for fptc using techniques that are
used in this section.

4.2 Analysis of fptc

As we did in subsection 4.1, we can easily show that (2) and (3) are concave functions.

Lemma 4.9. f−(4−;xk, yk) and f+(4+;xk, yk) are concave functions in terms of 4− and
4+.

Proof. Similar to the proof of lemma 4.4.

For simplicity, sometimes we will drop subscripts for xk, yk. Note that f0(0) needs to
be specified separately in fptc’s case because there is a jump in the utility function when
4 = 0. Introduction of the fixed transaction cost to the portfolio optimization causes certain
changes. Note that most analyses in section is about the case of | 4 | > 0 because the case
of | 4 | = 0 is simple. First of all, two lines, (5) and (6), have intercept terms as below.

w1 =
xkR + yku−KR + ((1− k1)R− u)4∗−
xkR + ykd−KR + ((1− k1)R− d)4∗−

(11)

and

w2 =
xkR + yku−KR + (−(1 + k2)R + u)4∗+
xkR + ykd−KR + (−(1 + k2)R + d)4∗+

, (12)

where w1 and w2 are defined as (7).

4∗− =
w1(xkR + ykd−KR)− (xkR + yku−KR)

−w1((1− k1)R− d) + ((1− k1)R− u)
(13)
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and

4∗+ =
w2(xkR + ykd−KR)− (xkR + yku−KR)

−w2(−(1 + k2)R + d) + (−(1 + k2)R + u)
. (14)

Like (9) we define lines that separates S into three regions as

w1 =
xkR + yku−KR
xkR + ykd−KR

, w2 =
xkR + yku−KR
xkR + ykd−KR

, (15)

where w1 and w2 are the same as those of ptc. These lines can rewritten as below.

y =
R(w1 − 1)

u− w1d
x− KR(w1 − 1)

u− w1d
, y =

R(w2 − 1)

u− w2d
x− KR(w2 − 1)

u− w2d
. (16)

One main difference between (9) and (16) is the existence of intercepts. Unlike (9) , lines
(16) usually do not go through the origin. Two lines in (16), meet at (x = K, y = 0). Since
(16) uses the same w1 and w2, we still have w1 ≥ w2 and (16.1) lies above (16.2) in S.
Besides these changes, most analyses in subsection 4.1 hold.

Lemma 4.10.
4∗− ≥ 0,when (x, y) is on the upper left of (16.1)
4∗− = 0, otherwise.

4∗+ ≥ 0,when (x, y) is on the lower right of (16.2)
4∗0 = 0, otherwise.

Proof. This lemma can be proved using lemma 4.3.

Like ptc’s case, lemma 4.10 indicates that lines (16.1) and (16.2) into sell-region, buy-
region and ntr. Explicit formulae for 4∗− and 4∗+ in fptc’s case can be written as

4∗− =
−R(w1 − 1)x+ (u− w1d)y + (w1 − 1)KR

w1((1− k1)R− d)− ((1− k1)R− u)
(17)

and

4∗+ =
−R(w2 − 1)x+ (u− w2d)y + (w2 − 1)KR

w2(−(1 + k1)R + d)− (−(1 + k1)R + u)
. (18)

Let us define the following functions, which are similar to θ−(4−) and θ+(4+) in ptc’s
case.

δ−(4−) := f−(4−)− f0(0), δ+(4+) := f+(4+)− f0(0).

Let us also define ntr of fptc as below. In the remainder of this section, we will show
that Θ−(x, y) (Θ+(x, y)) can be non-empty even when 4∗− > 0 (4∗− > 0); and analyze
the shape of Θ−(x, y) (Θ+(x, y)). Non-emptiness of Θ−(x, y) and Θ+(x, y) means that it is
possible that we may not take 4∗− or 4∗− even if they are positive.

As we mentioned in subsection 4.1, θ−(4−) and θ+(4+) go through the origin because
ptc does not consider the fixed transaction cost. However, δ−(4−) (δ+(4+)) has a negative
y-intercept because there is a jump at 4− = 0 (4+ = 0), where the fixed transaction cost
disappears.

In subsection 4.1, we defined ntr in terms of4 and learned that taking4∗− > 0 (4∗+ > 0)
is an optimal strategy for the ptc sell-problem (buy-problem). In this section, we define
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ntr slightly differently. Instead of describing ntr in terms of 4, we will describe it in
terms of 4∗− and 4∗+. In subsection 4.1, it was convenient to describe ntr in terms of 4 to
show that taking any positive 4∗− (or 4∗+) is an optimal strategy. However, in this section,
we describe ntr in terms of 4∗− and 4∗+ to show that even the positive foc(first order
optimality condition) solution may not be taken due to the existence of the fixed transaction
cost. Since a fixed (xk, yk) pair completely specifies 4∗− and 4∗+, our analysis specifies
ntr in terms of (xk, yk).
Furthermore, we also define ntr as below

Θ− := {(x, y) : δ−(4∗−(x, y)) ≤ 0},
Θ+ := {(x, y) : δ+(4∗+(x, y)) ≤ 0}. (19)

Note that we used equality in (19) because there is no transaction even if δ−(4∗−(x, y)) = 0
or δ+(4∗+(x, y)) = 0. We can check if a given (x, y) belongs to the no-trading region using
theorem 4.11.

Theorem 4.11. One can check if a given point (x, y) belongs to Θ− or Θ+ using the follow-
ing.

Θ− := {(x, y) : (πuw
1−γ
1 + πd)u(xR + yd−KR + ((1− k1)R− d)4∗− (x, y))

≤ πuu(xR + yd) + πdu(xR + yu)}. (20)

Θ+ := {(x, y) : (πuw
1−γ
2 + πd)u(xR + yd−KR + (−(1 + k2)R− d)4∗+ (x, y))

≤ πuu(xR + yd) + πdu(xR + yu)}. (21)

Proof. For simplicity, we will only discuss the fptc sell-problem. Optimal policy for one-
period fptc is simply taking4∗− > 0 if selling4∗− is better than not trading at all. Therefore,
we can specify the no-trading region by stating Θ− in-terms of (x, y). Since4∗− satisfies (11),
we can write f−(4∗−;x, y) as follows.

f−(4∗−;x, y) := πuu(xR + yu− τ− + ((1− k1)R− u)4∗−)
+πdu(xR + yd−KR + ((1− k1)R− d)4∗−)
= πu

(
u((w1)(xR + yd−KR + ((1− k1)R− d)4∗−))

)
+πdu(xR + yd−KR + ((1− k1)R− d)4∗−)

= (πuw
1−γ
1 + πd)u(xR + yd−KR + ((1− k1)R− d)4∗−)

(22)

Since4∗− is a function of (x, y), (20) specifies Θ− in terms of (x, y) only. Θ+’s case is omitted
because it is a mirror-image of Θ−’s case.

Theorem 4.11 completely describes ntr because it easy to check if a certain (x, y) pair falls
into the no-trading region using it. Figure 4.2 depicts the no-trading region of fptc for the
following parameters.

πu = 0.5, πd = 0.5, u = 1.3, d = 0.9, R = 1.04,
k1 = 0.003, k2 = 0.003, γ = 2, K = 0.13.

Theorem 4.12. The following is an optimal strategy for fptc problem.

12



Figure 1: ntr of fptc

1. Given (x, y), calculate 4∗− and 4∗+.

2. If 4∗− > 0 and (x, y) /∈ Θ−, liquidate 4∗− of risky asset.

3. If 4∗+ > 0 and (x, y) /∈ Θ+ purchase 4∗+ of risky asset.

4. Otherwise, do nothing.

Proof. Based on lemma 4.10, only 3 mutually exclusive cases can happen.

Case 1: 4∗− > 0.

Case 2: 4∗+ > 0.

Case 3: 4∗− = 4∗+ = 0.

When 4∗− > 0 (4∗+ > 0) it is an optimal solution for the fptc sell-(buy)problem because f−
(f+) is a concave function. We accept4∗− or4∗+ as an optimal solution only if it is better than
f0(4 = 0). (Application of the branch-and-bound algorithm.) Liquidating (Purchasing) 4∗−
(4∗+) of risky a asset is better than not trading only if (x, y) /∈ Θ− ((x, y) /∈ Θ+) from
theorem 4.11. Therefore, taking steps above is an optimal strategy.

In the remainder of this section, we analyze the shape of Θ− and Θ+ in terms of x
and y, which turn out to be indefinite in most cases. To proceed, let us define q(x, y) :=
(ax+ by + c)γ−1/(γ − 1). Then its hessian is

13



52q(x, y) := −γ(ax+ by + c)−γ−1
[
a2 ab
ab b2

]
. (23)

Note that (23) is a rank-one negative definite matrix. Using (23), we can write the
Hessian of δ−(4∗−(x, y)) as below. (Buy-problem’s case is omitted because it is a mirro-
image of sell-problem’s case.)

52Θ− = −γπu(xR + yu−KR + ((1− k1)R− u)4∗−)−γ−1 × A
−γπd(xR + yd−KR + ((1− k1)R− d)4∗−)−γ−1 ×B
+γπu(xR + yu)4∗−)−γ−1 × A′
+γπd(xR + yd)4∗−)−γ−1 ×B′,

(24)

where

A :=

[
R−R(w1 − 1)((1− k1)R− u)/τ−
u− (uw1d)((1− k1)R− u)/τ−

] [
R−R(w1 − 1)((1− k1)R− u)/τ−
u− (uw1d)((1− k1)R− u)/τ−

]T
,

B :=

[
R−R(w1 − 1)((1− k1)R− d)/τ−
d− (uw1d)((1− k1)R− d)/τ−

] [
R−R(w1 − 1)((1− k1)R− d)/τ−
d− (uw1d)((1− k1)R− d)/τ−

]T
,

τ− := w1((1− k1)R− d)− ((1− k1)R− u),

A′ :=

[
R2 Ru
uR u2

]
B′ :=

[
R2 Rd
dR d2

]
.

In (24), A, A′, B, and B′ are rank-one positive semidefinite matrices. Since A′ and B′

have positive signs, 52Θ− becomes positive semidefinite when γπu(xR + yu)4∗−)−γ−1 and
γπd(xR+yd)4∗−)−γ−1 are significantly larger than γπu(xR+yu−KR+((1−k1)R−u)4∗−)−γ−1

and γπd(xR + yd − KR + ((1 − k1)R − d)4∗−)−γ−1, which would indicate that Θ− is a
convex space of (x, y). However, according to our tests, Sum of γπu(xR + yu)4∗−)−γ−1 and
γπd(xR+ yd)4∗−)−γ−1 is similar to the sum of γπu(xR+ yu−KR+ ((1−k1)R−u)4∗−)−γ−1

and γπd(xR + yd −KR + ((1 − k1)R − d)4∗−)−γ−1, and 52Θ− usually turned out to have
one positive eigenvalue and one negative eigenvalue. Hence, 52Θ− is usually indefinite. Like
52Θ−, 52Θ+ is also indefinite in most cases.

So far we showed how to find an optimal solution for a single period problem. In the
following section we introduced a heuristic (Algorithm-1) that find an (near) optimal solution
for a multi-period fptc problem and report computational results.

5 Numerical implications

Computational test results in this section is presented in subsections 5.1∼5.3. A heuristic
that can produce an approximate solution for multi-period fptc is introduced in subsection
5.1. subsection 5.2, depicts how changing each parameter affects ntr. In subsection 5.3, we
compare our results to actual asset allocations of several world-renowned psps.
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5.1 A heuristic for multi-period fptc

In this subsection we introduce a heuristic for solving multi-period fptc problems. For
testing purpose, we used the following benchmark parameters: rb = 1.0371, rs = 1.0771,
σs = 0.2, γ = 2, k1 = 0.005, k2 = 0.005, K is 0.1% of the total wealth. rb = 1.0371 was
taken from Bodie, Markus, and Kane (2005) and rs is set to 1.0771 so that risk-premium is
around 4%. From these parameters, we can compute πd = 0.5, πu = 0.5, d = 0.8771, and
u = 1.2771. Unless stated otherwise, fptc problems in this paper will use these parameters.

From now on we let φ denotes the percentage change in net contribution. In this subsec-
tion φ ∈ {−5%, 0%,+5%}. Let us give a simple example. Suppose that φ = −5%. Then, x
is decreased by 0.05× (x+ y) at the beginning of each period for T periods.

Taking net-contribution into account for optimal asset allocation is worthwhile for the
following reason. First, most psps have quite accurate estimates on expected φ of the
near future. Simply put, a psp manager can easily come by future net-contribution values.
Second, as we will show later in subsection 5.2, φ has a significant impact on optimal asset
allocations. To check how changes of φ affect fptc’s optimal allocation, Algorithm-1 was
implemented so that it can take periodic changes in x by net-contribution into account.

The algorithm we introduce in this section can solve fptc approximately where T is
relatively large. However, since the running time of our brute-force method increases expo-
nentially as the number of periods increases, it may be difficult to run this algorithm for more
than several (up to 5 or 6) periods with a relatively small ε. Algorithm-1 in the appendix
produces an approximate solution for a discrete-time multi-period portfolio optimization
problem. We can expect to get a near-optimal solution if a small ε is used.

In Algorithm-1, input arguments k1, k2, K,d, u, πd, πu, rb are constant values, φ is an
annual changes in total asset, and ε > 0 is an offset. In Algorithm-1, ‘Loop δ = −y : ε : x’
on [L06] repeats [L07] ∼ [L14] with different values of δ, which goes from −y to x with a
step size ε.

Certainly, we can solve the whole problem using a brute force method without [L17] ∼
[L18]. However, having [L17] ∼ [L18] in the algorithm reduces the running time of the
algorithm significantly because they provide us with 1-period optimal solutions at 2T−1

nodes at time T − 1. Put otherwise, if we try n possible values at these nodes, it would
require 2T−1 · n trials. But since we can find an optimal choice at each node of time T − 1,
its running time for time T − 1 would be 2T−1 instead.

We ran this algorithm at various points within a grid (x, y) ∈ [0, 4, 000] × [0, 4, 000] for
different values of φ in {−5%, 0%,+5%} to see how 3-period optimal trading policy changes
depending on φ. (Throughout this section, we report test results on 3-period fptc problems.)
Figure 2 depicts no-trading region (between dotted lines) and rebalancing lines (solid lines)
of the 3-period benchmark problem using above-mentioned parameters where φ = 0. Figure
2 is constructed by solving 3-period fptc at various points within [0, 4, 000] × [0, 4, 000].
When an initial (x, y) pair lies outside of the no-trading region, it is optimal to trade so
that resulting asset allocation falls onto the cloest rebalancing lines. Otherwise, not making
transaction is the optimal trading strategy. Note that ntr is bounded above and below by
two curves, not straight lines, that make ntr an indefinite space.

Figure 3 shows ntr of 1 ∼ 3-period fptc problems. According to Figure 3, ntr shrinks
as we increase the number of periods in fptc. There is a big difference between the sizes of
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Figure 2: Benchmark 3-period optimal trading policy φ = 0
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Figure 3: ntr of 1 ∼ 3 period optimal solutions: solid (3-period), dashed (2-period), dotted
(1-period)
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1-period fptc and 2-period fptc ntr and the reduction in the size of ntr gets smaller as
the number of periods decreases. This change in the size of ntr can be explained as follows.
Suppose that a (x0, y0) pair falls on the upper (sell-region and ntr boundary) boundary of
1-period fptc problem’s ntr meaning that profit from trading is almost equivalent to the
loss from trading cost. Now, suppose that we would like solve a 2-period fptc problem with
the same initial assets (x0, y0). Since the expected return from stock increase in each period
is positive, overall profit from trading would be greater than trading cost hence allowing
one to trade for the 2-period fptc problem. For this reason, ntr shrinks as the number of
periods, T , increases.

In this subsection, we introduced a heuristic for solving a multi-period fptc. In the
following subsection, we explain how parameter changes affect ntr of 3-period fptc.

5.2 Sensitivity analysis

In this section, we explina how changing each of 6 parmeters (φ, K, (k1, k2), γ, rs, and σ)
affects ntr of 3-period fptc. This is done by solving 3-period fptcat various combinations
of (x, y) ∈ [0, 4, 000]× [0, 4, 000] by changing each parameter while holding the others fixed.
Test result of this subsection can be summarized by Table 3.

Table 3: ntr change in response to a parameter increase
Parameter Par. notation Par. values Figure # ntr change

Net-balance φ −5%, 0%,+5% 4 Pushed up
Fixed cost K 0.1%, 0.5%, 1% 5 Widened
Prop. cost k1, k2 0.1%, 0.5%, 1% 6 Widened

Risk aversion γ 1.9, 2.0, 2.1 7 Pushed down
Risky asset return rs 1.0771, 1.0810, 1.0732 8 Pushed up

Volatility σ 1.9, 2.0, 2.1 9 Pushed down

Table 3 has 5 columns: Parameter, Par. Notation, Par. values, Fgure # and ntr change.
‘Parameter’ tells us which parameter’s sensitivity was tested. ‘Par. Notation’ is shows the
notation for each parameter. ‘Par. values’ are tried values for each parameter. ‘Figure #’
directs us to a figure that contains sensitivity test for each parameter. Finally, ‘ntr change’
tells how ntr changes as a parameter increases. As you can see in Table 3, most parameter
sensitivity test results are intuitive.

As φ increases ntr is pushed up. When φ is a positive number, it is expected that a
psp would receive a lump sum of cash addition to x at the beginning of each year. In other
words, even if a psp has more wealth on y, x to y ratio would be optimally balanced by
receiving more cash on x. On the other hand, when φ is a negative number, it is expected
that a psp will lose part of x at the beginning of each year hence requiring more allocation
of its wealth on x.

In Figure 5, we can see that ntr widens as K (fixed trading cost as a portion of total
asset value) increases. Let us give a simple example. Suppose that K is 0.1% of the total
value of assets and maximum expected profit from trading is 0.5% the total value of assets.
Then, it is better to trade. However, if we increase K to 1%, it is no more an optimal to
trade. Like this small example, as we increase K ntr would be widened too. As you can
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see in Figure 5, changes in K seems to have a big effect on the size of ntr. When K is
about 1% of the total asset, ntr covers most of the positive quadrant.

Like K, larger k1 and k2 widen ntr for the same reason as the case of K. However,
the impact of changes in k1 and k2 is smaller than K possibly because k1 and k2 are paid
proportional to the risky asset only.

In addition, we tried 3 values for γ, which were 1.9, 2.0 and 2.1. As Figure 7 shows
smaller γ makes an investor less sensitive to the risk and force him/her to invest more
money on a risky asset lifting the ntr. This is because a larger γ means a higher order for
the crra utility function, which becomes more sensitive to changes.

In Figure 8, larger values of rs let an investor to invest more on a risky asset because
higher expected return from a risky asset makes investing on a risky asset more attractive.

Figure 9 depicts how ntr change for different values of σ. Like the case of γ, smaller
values of σ lift ntr because smaller volatility in a risky asset means less risk on a risky
asset hence making a risky asset a more attractive investment opportunity.

In this subsection, we investigated how changing each parameter affects ntr. In the
following subsection, we apply our asset allocation scheme to 5 large-scale psps and compare
theoretical asset allocations to their actual asset allocations.

5.3 Application to pension funds

In subsection 5.2, we studied how 3-period optimal rebalancing strategies changes depending
on 6 input parameters. In this subsection, we apply our optimal asset allocation scheme to
some world-renowned pension funds (whose detailed financial information is divulged to
public) and compare our theoretical results to their actual asset allocations.

Tables 12∼16 include tests results on 5 psps that we studied. Each of these tables
is made of two parts. Top halves of them are tests results without applying φ and the
bottom halves that reflect φ. In each row of Table 12∼16, we solved 9 problems using actual
x(risk-free asset value) and y(risky asset value) of each pspwith parameter combinations
σ ∈ {10%, 15%, 20%} × (k1, k2) ∈ {0.5%, 1.5%, 2.5%} while holding the other parameters
fixed. For each problem in Table12∼16, we applied the same parameters for 3-periods (or
years).

To point a certain spot in these tables, let us use [psp name, up(φ not applied) or
down(φ applied), Year, Vol.= #, k1, k2 = #]. For example, [NPS, up, 2004, Vol.= 10%,
k1, k2 = 1.5%] points to the upper part of Table 16 for year 2004, where Volatility is 10%
and k1, k2 are 0.15%, which is 81.17%. Likewise, [CALP, down, 2006, Vol.= 15%, k1, k2 =
0.5%] is 85.06%. In addition, we use ∗ to denote a wildcard. For example [CALP, up, *,
Vol.= 15%, k1, k2 = 0.5%] indicates risky asset allocations of CALP between 2002 ∼ 2011,
where Vol.= 15% and k1, k2 = 0.5%.

Since Tables 12∼16 lots of information, we summarized data in them in Tables 4, 5, and
6, which show us impacts of stock market volatility, liquidity (or proportional trading cost),
and net contribution, respectively, on theoretical optimal asset allocations.

First, Table 4 contains average risky asset allocations of each psp for different volatilities
(or σ), where φ is not applied. Columns 2, 4, 6 are average values of optimal asset allocations
in upper part of Tables 12∼16 for volatilities {10%, 15%, 20%}, respectively. For example,
82.06 is an average of [CALP, up, *, Vol.= 10%, k1, k2 = ∗%]. In Table 4, columns 3 and 5 are

18



differences between columns ‘1 and 3’ and ‘3 and 5’. In this test, we can see that theoretical
optimal asset allocation decrease by roughly 10% when market volatility is inceased by 5%.
24.53% drop in risky asset ratio for NPS on column 5 seems to occur because NPS’s current
asset allocation lies in the buy-region where as other psps asset allocations are near the
sell-region.

Table 4: Average of optimal asset allocations for different market volatility
Volatility (σ)

Name 10% Difference 15% Difference 20%
CALP 82.06 -8.23 73.82 -12.06 61.76

NYSLR 83.20 -6.30 76.90 -15.62 61.29
AVON 83.09 -3.99 79.11 -16.99 62.12
FAPF 81.88 -11.31 70.57 -11.96 58.62
NPS 81.99 -12.21 69.78 -24.53 45.26

Table 5 describes how optimal risky asset ratios change as the trading cost increases.
Columns 2, 4, 6 are averages of optimal risky asset ratios where trading costs are {0.5%,
1.5%, 2.5%}, respectively, where volatility (σ) is fixed at 20%. This test was conducted so
that how liquidity affects optimal risky asset ratio when market crashes. This test indicates
that as trading costs increase in 3 fold and 5 fold, optimal risky asset ratio increases by
3% ∼ 4% with an exception of FAPF whose asset allocation is near no-trading region and
NPS whose asset allocation is in the buy-region.

Table 5: Average of optimal asset allocations for different k1, k2 where σ is fixed at 20%
k1, k2

Name 0.5% Difference 1.5% Difference 2.5%
CALP 58.03 3.91 61.94 3.38 65.32

NYSLR 57.90 3.46 61.36 3.25 64.61
AVON 58.05 4.08 62.13 4.04 66.17
FAPF 57.55 1.48 59.03 0.25 59.28
NPS 49.08 -3.64 45.44 -4.19 41.25

It is well known that volatility and bid-ask spread increase when a stock market crash.
According to test in Table 4, a myopic investor would try to liquidate around 10% of its
risky asset when market volatility increases from 15% to 20%. However, s/he will also see
that doing so is not optimal because trading costs (bid-ask spread) jumps too. We can see
that this phenomenon is well explained by the test results in Table 4 and Table 5.

Table 6 summarizes how net contribution affects optimal asset allocation. According to
test results in Table 6, application of net contribution to fptc generates −0.03% ∼ 4.41%
changes in optmal asset allocations for 5 psps. Since a psp manages hundreds of millions of
dollars, a few percent of a psp’s wealth is a significant amount of money. Knowing that net
contribution has a significant impact on optimal asset allocation, we would like to emphasize
that it has to be taken into consideration for constructing asset allocation scheme for a psp.

In this remainder of this subsection, we compare our optimal asset allocations to the
actual asset allocations of psp of our interest. To our astonishment, actual asset allocations
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Table 6: Summary of φ’s impact
Volatility 10% Volatility 15% Volatility 20%

φ k1, k2 k1, k2 k1, k2
Name Average Applied 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% Average Difference

CALP -1.1769%
No 92.11 81.16 72.89 85.07 68.71 67.69 58.03 61.94 65.32 72.55

0.55%
Yes 90.90 80.04 71.90 84.07 69.20 68.49 57.23 61.07 65.05 71.99

NYSLR -3.9237%
No 92.09 81.61 75.90 85.05 73.95 71.70 57.90 61.36 64.61 73.80

1.30%
Yes 88.48 79.95 75.99 82.81 74.17 72.51 55.94 59.58 63.06 72.50

AVON 0.2324%
No 92.07 81.06 76.14 85.04 76.14 76.14 58.05 62.13 66.17 74.77

4.41%
Yes 91.57 80.84 73.45 84.74 69.46 64.03 55.26 56.54 57.36 70.36

FAPF 0.4341%
No 92.15 81.26 72.23 85.11 67.08 59.54 57.55 59.03 59.28 70.36

0.05%
Yes 92.15 81.17 72.85 85.21 67.59 59.21 57.25 58.35 59.03 70.31

NPS 0.0076%
No 92.35 80.76 72.87 85.29 67.51 56.55 49.08 45.44 41.25 65.68

-0.03%
Yes 92.35 80.76 73.00 85.29 67.51 56.55 49.08 45.57 41.25 65.71

of some psp matched our test results. Compared our tests, actual allocation of CALP,
NYSLR, and FAPF can be well explained by our tests.

For example, [CALP, up, 2002, Vol.= 20%, k1, k2 = 2.5%] is 66.69% which is slightly
higher than [CALP, down, 2002, Vol.= 25%, k1, k2 = 2.5%] = 64.05%, which reflects φ.
Values of [CALP, up, 2009, Vol.= 20%, k1, k2 = 1.5%] and [CALP, down, 2009, Vol.= 20%,
k1, k2 = 1.5%] are 60.86% and 61.00%, respectively, which are quite close to the actual
allocation 60.86%.

According to our tests, NYSLR allocations on a risky asset was lower than our solutions
around 2001 and exceeded our optimal asset allocation on a risky asset near 2011. For
example, [NYSLR, up, 2001, Vol.= 10%, k1, k2 = 1.5%]= 67.05% where its actual stock
ratio was 61.60%. In 2011, its stock ratio was 72.04% where our test suggested, [NYSLR,
up, 2011, Vol.= 20%, k1, k2 = 0.5%]= 56.05%.

Like NYSLR, AVON showed that they allocated more on a risky asset than our schemes.
For example, [AVON, up, 2002, Vol.= 20%, k1, k2 = 2.5%] = 66.22% whereas AVON actually
allocated 79.25%. Overall AVON seems to be allocating more on a risky asset than our
solutions.

To our surprise test result on FAPF was quite interesting. In Table 15, we can see that
FAPF’s actual asset allocations fall in the no-trading region where ‘Volatility=20%’ and
(k1, k2) = 2.5%. It seems like FAPF’s actual asset allocations can be achieved by solving
fptc with conservative parameter settings such as ‘Volatility=20%’ and (k1, k2) = 2.5%.
However, when we look at the lower half of the Table 15, where we took φ into account,
their asset allocations are different from ours by a few percent. Since, as we have shown
in Subsetion 5.2, changes in net contribution have a significant impact on optimal asset
allocation, we would recommend a pension fund manager to take φ into account for fine
tuning their asset allocation policy.

In case of AVON, their risky asset ratio is up to 70 ∼ 80%, which is somewhat high when
we consider the fact that the world stock market volatility is around 20%. Yet, we would like
to emphasize that asset allocation scheme depends on various factors such as risk aversion
tendencies (such as γ) and politics.

NPS showed somewhat different asset allocations. First of all, it showed relatively smaller
asset allocations on a risky asset investing most of its wealth on a risk-free asset. Since its
NPS foundation in 1987, it has been managed in a quite conservative way. However, its
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steadily increasing stock ratio indicates that it is considering more active participation in
stock market in the near future.

6 Conclusion

It has been observed that a group of large pension service providers (PSPs) have maintained
stable asset allocation while others have been actively adjusted the mix of their portfolios
during the financial turmoil in 2008 and 2009. This observation motivates this paper and
it aims to examine an optimal investment strategy of PSPs. In general, although a PSP
should ensure stability of investment returns in spite of adverse market conditions as well
as maximize returns on investment given risk levels, there are many factors to be taken into
account because they affect the investment strategies.

A PSPs asset allocation, this paper constructed a multi-period optimal portfolio while
taking fixed and proportional transaction costs into consideration. Also this theoretical
portfolio is compared with the actual portfolios of large PSPs. We investigated how no-
trading region changes as parameters vary. No-trading region shrinks as the number of
period decreases. Increasing fixed and proportional trading costs widen no-trading region
because larger trading costs will make an investor less willing to make a positive amount
of trade. The change in the size of no-trading region is more sensitive to the fixed cost
changes. Decreasing stock market volatility and risk aversion parameter lift the no-trading
region allowing an investor to allocate more wealth to a risky asset.

An interesting finding in this paper is the fact that the change in net-contribution has a
significant impact on the optimal asset allocation. Unlike other unpredictable factors, most
PSP’s have pretty accurate estimates for the future expected changes in net-contribution.
Therefore, we strongly advise a PSP to take the future expected changes in net-contribution
into account to come up with an optimal asset allocation.

A bid-ask spread and a stock market volatility are indicators of a stock market condition.
When there is a stock market crash, a myopic optimal choice is to liquidate as much stocks
as possible. Yet an increase in a bid-ask spread, which occurs often together with a stock
market crash, increases the trading costs preventing an investor from liquidating more. This
liquidity problem is considered in the optimal portfolio strategies.

Since we conducted our tests with certain limitations without reflecting each PSP’s envi-
ronment in detail, our optimal allocation can be far from an actual optimal asset allocation
for each PSP. Yet, in this paper we discovered that some PSP’s actual asset allocations can
be well explained by our test results. For example, actual asset allocations of CALP, NYSLR
and FAPF could be well explained by our test results. AVON seems to be investing around
10% more on a risky asset than our optimal asset allocation schemes. Our test shows that
the pension fund management strategies of some PSP’s are close to the theoretical optimal
allocations, but some have room to improve. NPS’s asset allocation on a risk-free asset
seems to be too high, but it has been steadily increasing the ratio of a risky asset, which is
a recommendable movement by our optimal strategies.

Regarding the limitation of our current research approach, we suggest to consider the
followings for future research. In this paper we only considered two types of assets, risk free
and risky assets as the guide line of top-down approach. More realistic and various choices
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of asset classes could be considered for optimal investment strategies. Tax would impact
the strategies. More detailed investigation can be conducted regarding the liquidity problem
including price impact.
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7 Appendix

Table 7: CALP: asset allocation and cash flow
Year Stock Bond Stock ratio Cont. Benefit NC NC ratio

2002 80,220,734 40,064,811 66.69% 2,955,706 6,534,405 -3,578,699 -2.97%
2003 86,135,240 37,904,304 69.44% 3,812,969 7,105,939 -3,292,970 -2.65%
2004 102,505,858 42,991,871 70.45% 6,527,792 7,790,611 -1,262,819 -0.86%
2005 114,838,218 54,340,778 67.88% 8,950,901 8,549,355 401,546 0.23%
2006 129,887,184 52,026,254 71.4% 9,175,908 9,407,002 -231,094 -0.12%
2007 149,704,501 61,218,906 70.98% 9,705,083 10,252,129 -547,046 -0.25%
2008 122,375,605 59,934,932 67.12% 10,754,877 11,066,832 -311,955 -0.17%
2009 80,229,982 51,597,650 60.86% 10,794,731 12,018,619 -1,223,888 -0.92%
2010 91,941,405 53,359,863 63.28% 10,333,916 13,154,844 -2,820,928 -1.94%
2011 116,731,425 53,066,388 68.75% 11,065,486 14,600,037 -3,534,551 -2.08%

Table 8: NYSLR: asset allocation and cash flow
Year Stock Bond Stock ratio Cont. Benefit NC NC ratio

2003 51,357,030 32,019,681 61.60% 980,853 5,029,766 -4,048,913 -4.86%
2004 74,876,438 29,691,227 71.61% 1,585,474 5,423,277 -3,837,803 -3.67%
2005 80,917,186 20,100,078 80.10% 3,314,919 5,690,865 -2,375,946 -2.35%
2006 88,550,861 19,868,995 81.67% 3,117,876 6,072,868 -2,954,992 -2.73%
2007 90,119,680 33,536,212 72.88% 3,100,572 6,431,731 -3,331,159 -2.69%
2008 58,582,079 10,500,845 84.80% 3,030,236 6,883,034 -3,852,798 -5.58%
2009 47,870,996 36,541,603 56.71% 2,885,457 7,265,499 -4,380,042 -5.19%
2010 72,673,981 33,726,066 68.30% 2,719,494 7,718,872 -4,999,378 -4.70%
2011 79,953,953 31,037,855 72.04% 4,578,479 8,520,223 -3,941,744 -3.55%

Algorithm-1: recursive multi-period portfolio optimizer

[Tree, FV ] = RMPO(x, y, k1, k2, K, d, u, πd, πu, rb, φ, ε, p, m)

[L01] Set t = (x+ y)× φ.

[L02] Set x = x+ t.

[L03] If p < T

[L04] Initialize Tree as an empty tree variable.

[L05] Initialize FV = −∞, δ, Treeu, Treed.

[L06] Loop δ = −y : ε : x

[L07] If δ < 0, set x′ = x−K ′ + δk′1 − δ and y′ = y + δ.

[L08] else if δ > 0, set x′ = x−K ′ − δk′2 − δ and y′ = y + δ.

[L09] else set x′ = x and y′ = y.

24



Table 9: AVON: asset allocation and cash flow
Year Stock Bond Stock ratio Cont. Benefit NC NC ratio

2002 1,132,219 296,399 79.25% 56,382 68,004 -11,622 -0.81%
2003 801,006 302,153 72.61% 63,347 70,482 -7,135 -0.65%
2004 1,083,154 354,532 75.34% 71,492 75,354 -3,862 -0.27%
2005 1,341,347 370,825 78.34% 75,361 79,196 -3,835 -0.22%
2006 1,565,453 427,810 78.54% 93,403 81,324 12,079 0.61%
2007 1,683,838 446,958 79.02% 105,149 94,038 11,111 0.52%
2008 1,360,519 495,827 73.29% 112,646 100,908 11,738 0.63%
2009 1,067,809 355,936 75.00% 125,349 111,161 14,188 1.00%
2010 1,463,791 487,930 75.00% 134,681 121,232 13,449 0.69%
2011 1,602,545 534,182 75.00% 139,519 121,745 17,774 0.83%

Table 10: FAPF: asset allocation and cash flow
Year Stock Bond Stock ratio Cont. Benefit NC NC ratio

2002 66,580 48,611 57.80% 40,186 37,939 2,247 1.95%
2003 79,082 55,498 58.76% 41,481 39,057 2,424 1.80%
2004 90,659 62,358 59.25% 42,904 40,696 2,208 1.44%
2005 110,338 74,643 59.65% 44,883 42,268 2,615 1.41%
2006 118,487 81,420 59.27% 45,906 44,033 1,873 0.94%
2007 126,222 84,704 59.84% 47,603 46,405 1,198 0.57%
2008 89,576 67,120 57.17% 50,783 49,796 987 0.63%
2009 117,526 70,262 62.58% 50,678 54,348 -3,670 -1.95%
2010 126,470 71,135 64.00% 51,267 55,050 -3,783 -1.91%
2011 104,531 87,303 54.49% 53,895 54,919 -1,024 -0.53%

[L10] If (x, y) ∈ S

[L11] [Treeu, FVu] = RMPO(x′rb, y
′u, k1, k2, K, d, u, πu, πd, φ, ε, p+ 1)

[L12] [Treed, FVd] = RMPO(x′rb, y
′d, k1, k2, K, d, u, πu, πd, φ, ε, p+ 1)

[L13] If FV < πuFVu + πdFVd, set FV = πuFVu + πdFVd,

[L14] Tree.δ = δ, Tree.Treeu = Treeu, Tree.Treed = Treed.

[L15] End of the loop that began at [L06].

[L16] else if p = T

[L17] Solve one-period optimal problem using the method in section 4.2 and return

[L18] one-peirod optimal δ, FV , an empty Treeu, and an empty Treed.
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Figure 4: ntr of periodic changes (φ) of x: solid (0%), dotted (+5%), dashed (−5%)
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Figure 5: ntr of fptc with various K: solid (0.1%), dotted (0.5%), dashed (1%)
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Figure 6: ntr of fptc with various k1, k2: solid (0.1%), dashed (0.5%), dotted (1%)
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Figure 7: ntr of fptc with various γ: solid (2), dotted (2.1), dashed (1.9)
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Figure 8: ntr of fptc with various rs: solid (1.0771), dotted (1.0810), dashed (1.0732)
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Figure 9: ntr of fptc with various σ: solid (0.2), dotted (0.21), dashed (0.19)
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Table 11: NPS: asset allocation and cash flow
Year Stock Bond Stock ratio Cont. Benefit NC NC ratio

2004 12,702,300 120,596,100 9.53% 17,143 2,914 14,229 0.0107%
2005 20,394,900 141,482,400 12.6% 18,544 3,584 14,960 0.0092%
2006 21,986,300 164,432,400 11.79% 20,152 4,360 15,792 0.0085%
2007 38,422,600 174,834,000 18.02% 21,670 5,182 16,488 0.0077%
2008 34,263,500 191,124,000 15.2% 22,986 6,180 16,806 0.0075%
2009 49,720,000 215,085,300 18.78% 23,858 7,471 16,387 0.0062%
2010 74,973,200 229,166,000 24.65% 25,285 8,636 16,649 0.0055%
2011 82,061,600 238,071,000 25.63% 27,430 9,819 17,611 0.0055%

Table 12: CALP fptc allocation
fptc optimal risky asset ratio

φ not applied Volatility 10% Volatility 15% Volatility 20%
psp information World Stock Market k1, k2 k1, k2 k1, k2

Year St. ratio NA Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 66.69 % NA 0.27 4.02 19.30 % 92.12 81.17 73.12 85.08 67.00 66.69 58.03 62.04 66.69
2003 69.44 % NA 0.18 2.66 12.26 % 92.10 81.14 73.06 85.07 69.44 69.44 58.03 62.07 66.06
2004 70.45 % NA 0.14 2.03 8.19 % 92.10 81.13 73.05 85.06 70.45 70.45 58.04 62.08 66.07
2005 67.88 % NA 0.15 2.15 8.19 % 92.11 81.16 73.09 85.07 67.88 67.88 58.03 62.05 66.03
2006 71.40 % NA 0.15 2.13 7.45 % 92.09 81.12 73.03 85.06 71.40 71.40 58.04 62.09 66.09
2007 70.98 % NA 0.16 2.36 9.33 % 92.10 81.12 73.04 85.06 70.98 70.98 58.04 62.08 66.08
2008 67.12 % NA 0.23 3.36 23.63 % 92.11 81.17 73.11 85.08 67.12 67.12 58.03 62.05 66.02
2009 60.86 % NA 0.09 1.36 23.27 % 92.14 81.25 72.20 85.10 67.06 60.86 58.01 60.86 60.86
2010 63.28 % NA 0.08 1.13 20.60 % 92.13 81.22 72.16 85.09 67.04 63.28 58.02 62.01 63.28
2011 68.75 % NA 0.07 1.00 17.97 % 92.11 81.15 73.08 85.07 68.75 68.75 58.03 62.06 66.05

Average 67.69 % NA 0.15 2.22 15.02 % 92.11 81.16 72.89 85.07 68.71 67.69 58.03 61.94 65.32

fptc optimal risky asset ratio
φ applied Volatility 10% Volatility 15% Volatility 20%

psp information World Stock Market k1, k2 k1, k2 k1, k2
Year St. ratio φ Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 66.69 % -2.98 % 0.27 4.02 19.30 % 89.09 78.11 71.04 83.06 68.74 68.74 56.04 60.08 64.08
2003 69.44 % -2.65 % 0.18 2.66 12.26 % 89.08 79.09 71.33 83.05 71.33 71.33 56.04 60.10 64.12
2004 70.45 % -0.87 % 0.14 2.03 8.19 % 91.09 80.11 72.02 84.05 71.07 71.07 57.04 61.09 66.08
2005 67.88 % 0.24 % 0.15 2.15 8.19 % 92.11 81.16 73.10 85.07 67.72 67.72 58.03 62.05 67.01
2006 71.40 % -0.13 % 0.15 2.13 7.45 % 92.09 81.12 73.03 85.06 71.49 71.49 58.04 62.09 66.09
2007 70.98 % -0.26 % 0.16 2.36 9.33 % 92.10 81.12 72.02 85.06 71.16 71.16 58.04 61.09 66.09
2008 67.12 % -0.17 % 0.23 3.36 23.63 % 92.11 81.17 72.09 85.08 67.24 67.24 58.03 62.05 66.02
2009 60.86 % -0.93 % 0.09 1.36 23.27 % 91.13 80.22 72.19 84.09 67.06 61.43 57.01 61.00 61.43
2010 63.28 % -1.94 % 0.08 1.13 20.60 % 90.11 79.17 71.12 83.08 66.01 64.53 57.02 61.03 64.53
2011 68.75 % -2.08 % 0.07 1.00 17.97 % 90.09 79.10 71.01 83.05 70.21 70.21 57.04 60.09 65.08

Average 67.69 % -1.18 % 0.15 2.22 15.02 % 90.90 80.04 71.90 84.07 69.20 68.49 57.23 61.07 65.05
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Table 13: NYSLR fptc optimal allocation
fptc optimal risky asset ratio

φ not applied Volatility 10% Volatility 15% Volatility 20%
psp information World Stock Market k1, k2 k1, k2 k1, k2

Year St. ratio NA Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2003 61.60 % NA 0.18 2.66 12.26 % 92.14 81.24 72.19 85.10 67.05 61.60 58.01 61.60 61.60
2004 71.61 % NA 0.14 2.03 8.19 % 92.09 81.11 73.03 85.06 71.61 71.61 58.04 62.09 66.09
2005 80.10 % NA 0.15 2.15 8.19 % 92.05 81.01 80.10 85.02 80.10 80.10 58.06 62.17 66.23
2006 81.67 % NA 0.15 2.13 7.45 % 92.05 81.67 81.67 85.01 81.67 81.01 58.07 62.18 66.26
2007 72.88 % NA 0.16 2.36 9.33 % 92.09 81.10 72.88 85.05 72.88 72.88 58.04 62.10 66.11
2008 84.80 % NA 0.23 3.36 23.63 % 92.03 84.80 84.80 85.00 84.80 81.08 58.08 61.22 66.31
2009 56.71 % NA 0.09 1.36 23.27 % 92.16 81.30 72.28 85.12 67.10 56.71 56.71 56.71 56.71
2010 68.30 % NA 0.08 1.13 20.60 % 92.11 81.15 73.09 85.07 68.30 68.30 58.03 62.06 66.04
2011 72.04 % NA 0.07 1.00 17.97 % 92.09 81.11 73.02 85.06 72.04 72.04 58.04 62.09 66.10

Average 72.19 % NA 0.14 2.02 14.54 % 92.09 81.61 75.90 85.05 73.95 71.70 57.90 61.36 64.61

fptc optimal risky asset ratio
φ applied Volatility 10% Volatility 15% Volatility 20%

psp information World Stock Market k1, k2 k1, k2 k1, k2
Year St. ratio φ Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2003 61.60 % -4.86 % 0.18 2.66 12.26 % 87.10 77.14 69.07 81.07 64.74 64.74 56.02 59.05 63.03
2004 71.61 % -3.67 % 0.14 2.03 8.19 % 88.06 78.04 74.33 82.03 74.33 74.33 56.05 60.13 63.18
2005 80.10 % -2.35 % 0.15 2.15 8.19 % 90.04 82.03 82.03 83.00 82.03 79.06 57.07 60.20 64.29
2006 81.67 % -2.73 % 0.15 2.13 7.45 % 89.02 83.97 83.97 83.97 82.02 78.12 56.08 60.22 64.32
2007 72.88 % -2.69 % 0.16 2.36 9.33 % 89.06 79.05 74.89 83.03 74.89 74.89 56.05 60.13 64.17
2008 84.80 % -5.58 % 0.23 3.36 23.63 % 89.81 88.02 84.12 88.01 79.13 75.28 55.10 58.28 62.43
2009 56.71 % -5.19 % 0.09 1.36 23.27 % 87.12 76.18 69.16 81.09 64.04 59.82 55.01 59.01 59.82
2010 68.30 % -4.70 % 0.08 1.13 20.60 % 87.07 77.06 71.67 81.04 71.67 71.67 56.04 59.11 63.14
2011 72.04 % -3.55 % 0.07 1.00 17.97 % 89.06 78.04 74.69 82.03 74.69 74.69 56.05 60.13 63.18

Average 72.19 % -3.92 % 0.14 2.02 14.54 % 88.48 79.95 75.99 82.81 74.17 72.51 55.94 59.58 63.06

Table 14: AVON fptc optimal allocation
fptc optimal risky asset ratio

φ not applied Volatility 10% Volatility 15% Volatility 20%
psp information World Stock Market k1, k2 k1, k2 k1, k2

Year St. ratio NA Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 79.25 % NA 0.27 4.02 19.30 % 92.06 81.02 79.25 85.02 79.25 79.25 58.06 62.16 66.22
2003 72.61 % NA 0.18 2.66 12.26 % 92.09 81.10 72.61 85.05 72.61 72.61 58.04 62.10 66.11
2004 75.34 % NA 0.14 2.03 8.19 % 92.08 81.07 75.34 85.04 75.34 75.34 58.05 62.12 66.15
2005 78.34 % NA 0.15 2.15 8.19 % 92.06 81.03 78.34 85.03 78.34 78.34 58.06 62.15 66.20
2006 78.54 % NA 0.15 2.13 7.45 % 92.06 81.03 78.54 85.03 78.54 78.54 58.06 62.15 66.21
2007 79.02 % NA 0.16 2.36 9.33 % 92.06 81.02 79.02 85.03 79.02 79.02 58.06 62.16 66.22
2008 73.29 % NA 0.23 3.36 23.63 % 92.09 81.09 73.29 85.05 73.29 73.29 58.04 62.11 66.12
2009 75.00 % NA 0.09 1.36 23.27 % 92.08 81.07 75.00 85.04 75.00 75.00 58.05 62.12 66.15
2010 75.00 % NA 0.08 1.13 20.60 % 92.08 81.07 75.00 85.04 75.00 75.00 58.05 62.12 66.15
2011 75.00 % NA 0.07 1.00 17.97 % 92.08 81.07 75.00 85.04 75.00 75.00 58.05 62.12 66.15

Average 76.14 % NA 0.15 2.22 15.02 % 92.07 81.06 76.14 85.04 76.14 76.14 58.05 62.13 66.17

fptc optimal risky asset ratio
φ applied Volatility 10% Volatility 15% Volatility 20%

psp information World Stock Market k1, k2 k1, k2 k1, k2
Year St. ratio φ Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 79.25 % -0.81 % 0.27 4.02 19.30 % 91.05 80.00 79.90 84.02 79.90 79.90 57.07 61.17 66.23
2003 72.61 % -0.65 % 0.18 2.66 12.26 % 91.08 80.08 73.09 85.05 73.09 73.09 57.05 61.11 66.12
2004 75.34 % -0.27 % 0.14 2.03 8.19 % 92.08 81.07 75.54 85.04 75.54 75.54 57.05 61.13 66.16
2005 78.34 % -0.22 % 0.15 2.15 8.19 % 92.06 81.03 78.51 85.03 78.51 78.51 57.06 61.16 66.21
2006 78.54 % 0.61 % 0.15 2.13 7.45 % 92.06 81.04 78.06 85.03 78.06 78.06 58.06 62.15 67.19
2007 79.02 % 0.52 % 0.16 2.36 9.33 % 92.06 81.03 78.62 85.03 78.62 78.62 58.06 62.15 67.20
2008 73.29 % 0.63 % 0.23 3.36 23.63 % 92.09 81.10 73.00 85.05 72.83 72.83 58.04 62.10 67.10
2009 75.00 % 1.00 % 0.09 1.36 23.27 % 93.09 82.10 74.26 86.05 74.26 74.26 58.05 62.11 67.12
2010 75.00 % 0.69 % 0.08 1.13 20.60 % 93.09 81.08 74.49 86.05 74.49 74.49 58.05 62.12 67.13
2011 75.00 % 0.83 % 0.07 1.00 17.97 % 93.09 81.08 74.38 86.05 74.38 74.38 58.05 62.12 67.12

Average 76.14 % 0.23 % 0.15 2.22 15.02 % 92.18 80.96 75.99 85.24 75.97 75.97 57.65 61.73 66.76
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Table 15: FAPF fptc optimal allocation
fptc optimal risky asset ratio

φ not applied Volatility 10% Volatility 15% Volatility 20%
psp information World Stock Market k1, k2 k1, k2 k1, k2

Year St. ratio NA Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 57.80 % NA 0.27 4.02 19.30 % 92.16 81.28 72.26 85.12 67.09 57.80 57.80 57.80 57.80
2003 58.76 % NA 0.18 2.66 12.26 % 92.15 81.27 72.24 85.11 67.08 58.76 58.00 58.76 58.76
2004 59.25 % NA 0.14 2.03 8.19 % 92.15 81.27 72.23 85.11 67.08 59.25 58.00 59.25 59.25
2005 59.65 % NA 0.15 2.15 8.19 % 92.15 81.26 72.22 85.11 67.07 59.65 58.00 59.65 59.65
2006 59.27 % NA 0.15 2.13 7.45 % 92.15 81.26 72.23 85.11 67.08 59.27 58.00 59.27 59.27
2007 59.84 % NA 0.16 2.36 9.33 % 92.15 81.26 72.22 85.11 67.07 59.84 58.01 59.84 59.84
2008 57.17 % NA 0.23 3.36 23.63 % 92.16 81.29 72.27 85.12 67.10 57.17 57.17 57.17 57.17
2009 62.58 % NA 0.09 1.36 23.27 % 92.14 81.22 72.17 85.10 67.04 62.58 58.01 62.01 62.58
2010 64.00 % NA 0.08 1.13 20.60 % 92.13 81.21 72.14 85.09 67.03 64.00 58.02 62.02 64.00
2011 54.49 % NA 0.07 1.00 17.97 % 92.17 81.32 72.32 85.13 67.13 57.04 54.49 54.49 54.49

Average 59.28 % NA 0.15 2.22 15.02 % 92.15 81.26 72.23 85.11 67.08 59.54 57.55 59.03 59.28

fptc optimal risky asset ratio
φ applied Volatility 10% Volatility 15% Volatility 20%

psp information World Stock Market k1, k2 k1, k2 k1, k2
Year St. ratio φ Spread Spread-S Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2002 57.80 % 1.95 % 0.27 4.02 19.30 % 93.17 82.31 74.32 86.13 68.12 57.00 56.69 56.69 56.69
2003 58.76 % 1.80 % 0.18 2.66 12.26 % 93.16 82.30 73.28 86.12 68.10 57.72 57.72 57.72 57.72
2004 59.25 % 1.44 % 0.14 2.03 8.19 % 93.16 82.29 73.27 86.12 68.10 58.41 58.41 58.41 58.41
2005 59.65 % 1.41 % 0.15 2.15 8.19 % 93.16 82.29 73.26 86.12 68.09 58.82 58.00 58.82 58.82
2006 59.27 % 0.94 % 0.15 2.13 7.45 % 93.16 81.27 73.26 86.12 68.09 58.72 58.00 58.72 58.72
2007 59.84 % 0.57 % 0.16 2.36 9.33 % 92.15 81.26 73.25 85.11 68.09 59.50 58.00 59.50 59.50
2008 57.17 % 0.63 % 0.23 3.36 23.63 % 92.16 81.30 73.30 85.12 68.11 56.81 56.81 56.81 56.81
2009 62.58 % -1.95 % 0.09 1.36 23.27 % 90.12 79.18 71.13 83.08 66.02 63.83 57.02 61.03 63.83
2010 64.00 % -1.91 % 0.08 1.13 20.60 % 90.11 79.16 71.10 83.07 66.01 65.25 57.02 61.04 65.00
2011 54.49 % -0.53 % 0.07 1.00 17.97 % 91.17 80.30 72.31 85.13 67.12 56.02 54.78 54.78 54.78

Average 59.28 % 0.43 % 0.15 2.22 15.02 % 92.15 81.17 72.85 85.21 67.59 59.21 57.25 58.35 59.03

Table 16: NPS fptc optimal allocation
fptc optimal risky asset ratio

φ not applied Volatility 10% Volatility 15% Volatility 20%
psp information World Stock Market k1, k2 k1, k2 k1, k2

Year St. ratio NA Spread Scaled Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2004 9.53 % NA 0.14 2.03 8.19 % 92.38 80.85 72.11 85.32 67.58 56.66 49.10 45.24 41.33
2005 12.60 % NA 0.15 2.15 8.19 % 92.37 80.82 73.09 85.31 67.55 56.61 49.09 45.22 41.29
2006 11.79 % NA 0.15 2.13 7.45 % 92.37 80.83 73.10 85.31 67.56 56.63 49.09 45.23 41.30
2007 18.02 % NA 0.16 2.36 9.33 % 92.34 80.75 72.98 85.29 67.50 56.54 49.08 45.18 41.24
2008 15.20 % NA 0.23 3.36 23.63 % 92.35 80.79 73.04 85.30 67.52 56.58 49.08 45.20 41.27
2009 18.78 % NA 0.09 1.36 23.27 % 92.34 80.74 72.97 85.28 67.49 56.53 49.07 45.18 41.23
2010 24.65 % NA 0.08 1.13 20.60 % 92.31 80.67 72.86 85.26 67.43 56.44 49.06 46.15 41.17
2011 25.63 % NA 0.07 1.00 17.97 % 92.31 80.66 72.84 85.25 67.42 56.43 49.06 46.14 41.16

Average 17.03 % NA 0.13 1.94 14.83 % 92.35 80.76 72.87 85.29 67.51 56.55 49.08 45.44 41.25

fptc optimal risky asset ratio
φ applied Volatility 10% Volatility 15% Volatility 20%

psp information World Stock Market k1, k2 k1, k2 k1, k2
Year St. ratio φ Spread Scaled Volatility 0.5% 1.5% 2.5% 0.5% 1.5% 2.5% 0.5% 1.5% 2.5%
2004 9.53 % 0.01 % 0.14 2.03 8.19 % 92.38 80.85 73.14 85.32 67.58 56.66 49.10 45.24 41.33
2005 12.60 % 0.01 % 0.15 2.15 8.19 % 92.37 80.82 73.09 85.31 67.55 56.61 49.09 45.22 41.29
2006 11.79 % 0.01 % 0.15 2.13 7.45 % 92.37 80.83 73.10 85.31 67.56 56.63 49.09 45.23 41.30
2007 18.02 % 0.01 % 0.16 2.36 9.33 % 92.34 80.75 72.99 85.29 67.50 56.54 49.08 45.18 41.24
2008 15.20 % 0.01 % 0.23 3.36 23.63 % 92.35 80.79 73.04 85.30 67.52 56.58 49.08 45.20 41.27
2009 18.78 % 0.01 % 0.09 1.36 23.27 % 92.34 80.74 72.97 85.28 67.49 56.53 49.07 46.19 41.23
2010 24.65 % 0.01 % 0.08 1.13 20.60 % 92.31 80.67 72.86 85.26 67.43 56.44 49.06 46.15 41.17
2011 25.63 % 0.01 % 0.07 1.00 17.97 % 92.31 80.66 72.84 85.25 67.42 56.43 49.06 46.14 41.16

Average 17.03 % 0.01 % 0.13 1.94 14.83 % 92.35 80.76 73.00 85.29 67.51 56.55 49.08 45.57 41.25
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