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Systemic Risk, Financial Crisis and Vulnerability of Economy

Abstract

We develop a measure of systemic risk of network of economic sectors, both financial and real

sectors, based on symbolic transfer entropy (STE), by incorporating the strength and asymmetry

of information flow and by calibrating the works of Billio and et. al. (2012). Investigating the

time variation of systemic risk in the United States using size weighted index return of Fama

and French 48 industries, we document that systemic risk of whole economy as well as financial

sector start to increase beginning from the year 2001 and grow continuously until it reaches a

peak in 2008. In addition, we find that systemic risk pops up during Asian and Russian currency

crisis in 1998 albeit for short duration. In addition, we find that systemic risks are closely linked

to the rest of the economy. We use a battery of macro-economic variables, and show our systemic

risk measure is robust with unemployment, treasury rate, return and volatility of stock index

among other macro-economic variables. Interestingly, the systemic risk in 2010 remains at same

high level as in financial crisis period of 2007/2008.
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1 Introduction

Financial crisis in 2007/2008 highlights the vulnerability of real economy to financial sector

meltdown, and creates keen interests of why, how and what happened to the financial sector

and the whole economy, ultimately leading to the biggest and painful recession after the Great

Depression in 1929. As a result of sudden unexpected financial crisis, the issue of how to

prevent another potential crisis and crash in the future caught immediate interests for academics,

practitioners, regulators and policymakers. Policy makers in the U.S. adopted one of the most

stringent regulations in 2010, adopting Dodd-Frank Act.1 Furthermore, regulators try to mend

several weaknesses that might be responsible for the crisis. Requiring CDS to be traded through

the Clearing House is one example. For academics, plethora of research, both theoretical and

empirical, on different aspects of financial crisis added to the better understanding of the causes,

processes of the current and past crises. Those researches have implications on several preventive

and preemptive measures to forestall potential future crisis. One of key issues in the prevention

of future crisis is the measurement problem. The relevant questions are as follows: what is the

symptom that potentially leads to the crisis? Are there any measures that signals potential

crisis? How to measure systemic risk?

While the idea of systemic risk is considered to be important and relevant in understanding

the current crisis and the prevention of potential future crisis, there is no clear consensus on the

concept and measurement of systemic risk. For example, Billio et. al. (2012) takes a viewpoint

that A more formal definition is any set of circumstances that threatens the stability of or

public confidence in the financial system., and analyze monthly returns of four types of financial

institutions: hedge funds, and publicly traded banks, broker/dealers, and insurance companies.

Lehar (2005) proposes to measure systemic risk, defined as the probability of a given number

of simultaneous bank defaults, from equity return data. Avesani et al. (2006) and Basurto and

Padilla (2006), among others, are examples of stress testing exercises on the financial sector

1Remind that the Sabanes-Oxley Act 0f 2002 was a response to the internet bubble and fraudulent behavior
of internet firms in 1999.
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using market-based information.

In this paper, we take much broader view of including whole economic system that includes

financial sectors and real sectors in one networking framework. The challenge to incorporate

wide range of economic sectors is how to identify and measure complex web of connection

among firms, industrial and financial firms. Key components in the measurement of systemic

risk are: connectedness, strength and direction of causality from one node to another in a

network, degree of concentration of risk in a particular node or nodes, where nodes represent,

in this paper, 48 industry group classified by Fama and French (1997). In addition, we capture

sensitivities of the industry and the network to market prices and economic conditions. Billio

et. al. (2012) empirically estimate the network structure of financial institutions generated

by stock-return interconnections, by simply measuring correlation directly and unconditionally

through principal components analysis and by pairwise Granger-causality tests and using these

metrics to gauge the degree of connectedness of the financial system. We propose symbolic

transfer entropy (STE) to capture not only connectedness, but also the direction and strength

of causality. The advantage of STE is that our systemic risk measure uses the strength as

well as asymmetry of information flow. Further, our systemic risk measure are flexible, i.e. we

can measure systemic risk for one industry, for example banking industry, or we can measure

systemic risk for financial sector comprising of three industry group of banking, insurance, and

trading. Most importantly, as we use current market information such as daily stock return, we

can measure up-to-date magnitude of systemic risk in almost real time at a reasonable computer

time and costs.2

One of most striking results from the empirical analysis is that our measure not only identifies

the current crisis and other past crisis in 1987, and 1997/1998 Asian and Russian crisis, but

also we found that systemic risk started to increase continuously from 2001 leading to financial

crisis in 2007/2008. In addition, we found that systemic risks are closely linked to the rest of the

2In this paper, we focus on three financial industry groups. However, with further calibration, we can apply
symbolic transfer entropy (STE), and measure systemic risk by any level of aggregation. For example, we can
calibrate SR measure, at a micro level, to a particular institution.
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economy. We use a battery of macro-economic variables, and show our systemic risk measure

is robust with unemployment, treasury rate, stock return and volatility of stock among other

macro-economic variables. Survey literature on systemic risk and measurement is summarized

in section 2. Our methodology, symbolic transfer entropy (STE), is described and discussed in

section 3. Section 4 describes data and graphical and econometric results. Conclusion follows

in section 5.

2 Literature review

The financial crisis in 2008 and 2009 which almost brought about the collapse of financial

sector revitalized the concept of systemic risk while it is reviewed by De Bandt and Hartmann

(2000). There are two types of systemic events, either horizontal or vertical one.3 In a horizontal

systematic event, the bad news or even failure of a financial institution bring about adverse effects

on one or several other financial institutions in a sequential way like domino. We observed this

phenomenon in the financial crisis in 2008-2009.4 In a vertical systemic event, the failure of

financial sector should adversely affect real sectors. The shock transfer could take the form of

credit crunch or debt deflation.

There are two approaches to understand the issue of systemic risk and macro-prudential reg-

ulation: empirical macroeconomics based and financial market based approach. These two ap-

proaches have different methodologies, emphases, and purposes. Macroeconomics base approach

focuses on the impact of systemic events on real economy while financial sector is considered

as amplification mechanism.5 Financial market based approach focuses on the financial market

structure while it views macroeconomy as background. This approach puts more emphasis on

the interaction among financial institutions, the nonlinear feedback effect, and the identification

of individual institutions that are systemically important.

3This categorization of systemic events is originally introduced by De Bandt and Hartmann (2000). Refer to
their paper for detailed explanation.

4See Brunnermeier (2009) to recall the chronological order of financial contagion.
5Refer to De Nicolo and Lucchetta (2010). Macroeconomics based approach helps us to better understand the

fundamental linkage between the real economy and the financial sector, especially in the long run.
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Three popular cross sectional measures of systemic risk are conditional value at risk(CoVaR)

by Adrian and Brunnermeier (2010), distressed insurance premium(DIP) by Huang, Zhou, and

Zhu (2011), and systemic expected shortfall(SES) by Acharya et al (2012). These measures aim

at estimating the magnitude of losses when many financial institutions simultaneously fall into

difficulty. CoVaR computes the value-at-risk (VaR) of financial institutions under the condition

that other institution is in financial distress. DIP computes required insurance premium to

cover the losses arising from distressed banking system. SES measures the expected loss to each

financial institution under the poor performance of entire set of financial institutions. While

these measures are useful when we know that financial institutions are in distress we cannot

use them for the early warning of the advent of financial crisis in that these measures cannot

distinguish the period of crisis from the period of non-crisis because all of them use conditional

approach.

Our work is closely related to Billio et al (2012) who propose connection based measures of

systemic risk in a network which is composed of 4 distinct types of financial institutions: bank,

insurance, trading companies, and hedge funds. They propose two measures using well estab-

lished econometric approaches: principal component analysis and pairwise Granger-causality

tests. The rationale of this approach is that the more connected are financial institutions, the

higher is systemic risk. This is based on the idea that linkage among financial institutions are

the key element of systemic risk. This is based on the theoretical development which argues

that financial crisis is more likely when the degree of correlation among the holdings of finan-

cial institutions is higher. They measure the connection between two financial institutions with

Granger-causality of monthly stock returns. Their connection measure is of binary value (0 or

1) by applying the confidence level cut-off to Granger-causality tests.

We extend the network approach of Billio et al (2012) by introducing the strength and

asymmetry of information flow between all nodes in a system and develop a measure of systemic

risk utilizing all industrial sectors which include financial industries as well as industries in real

sector. Their method of defining a binary connection by using the Granger causality test is not
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appropriate for fully understanding the systemic risk because the strength and asymmetry of

interconnection is not reflected in binary network.

Figure 1 illustrates this idea. The directed network between three industry sectors in Figure 1

(a) delineates a network of symmetric information flow which could be easily observed in the

binary Granger-causality network. The nodes represent industrial sectors. The links reflects the

strength of information flow between industrial sectors. Figure 1 (b) demonstrates a network

of asymmetric information flow which is the difference of information flow strength from i to j

and from j to i. Because all three industries Granger-cause each other, this asymmetric network

will be reduced to the binary network in Figure 1 (a) when we measure the connections between

industrial sectors via Granger causality. But, Granger-causality test could not distinguish the

network in Figure 1 (b) from that in Figure 1 (a). Figure 1 (c) and Figure 1 (d) display the

network for the asymmetry of the information flow in Figure 1 (a) and Figure 1 (b), respectively.

We call the network in Figure 1 (c) neutral economic system, i.e. the systemic risk will be zero

because there are no asymmetry of the information flows. In Figure 1 (d), the network, reflecting

the asymmetry of information flows, is quite different from the network shown in Figure 1 (c).

To measure systemic risk, we consider an amount of the strength of information flow and its

asymmetry feature using symbolic transfer entropy that can measure those then propose the

novel approach to assess systemic risk.

3 Measure of Systemic Risk

In this section we introduce a measure of information flow which enables us to identify the source

and sink nodes in a total economic system comprised of real and financial sectors.6 Aiming at

investigating the dynamic shock propagation in the total economic system during financial crisis

period, we adopt the symbolic transfer entropy (STE) measure from Econophysics literature to

quantify the information flow between two nodes and aggregate the pairwise information flow

for a node from other nodes in the system to figure out whether the node plays a role of either

6The information flow could be considered as the direction of shock transmission.
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Figure 1: Network of the information flows between industry sectors and its asymmetry (a)
Network structure of symmetric information flows (c) display a network topology for the asym-
metry of the information flows, showing nothing completely on a connection. (b) In this example,
network structure of symmetric information flows where the connections on this network show
the strength and the direction of information flow. (d) demonstrate the network structure for
asymmetry with the strength of information flow, showing it is quite different from the network
in (c).
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source or sink.7 A source node has a positive aggregate information flow while a sink node

has a negative aggregate information flow. We assume that internally or externally generated

systemic shocks will move from source nodes to sink nodes. In other words, a source node can

either generate a shock or transmit shock to a source or sink node while a sink node does absorb

shocks or transfer shocks to other sink nodes according to the hierarchy of the network.

3.1 Symbolic Transfer Entropy

Staniek and Lehnertz (2008) extend the measure of information transfer of Schreiber (2000)

by utilizing the technique of symbolization. The symbolic transfer entropy (STE) measure has

some merits over the original transfer entropy measure in a couple of ways: symbolic transfer

entropy is a more robust and very computationally fast method to quantify synchronization and

complex interaction between dynamical systems than original transfer entropy method which is

related to the causality measure of Granger (1969).8

In order to better understand symbolic transfer entropy, we need to know what transfer

entropy is. Suppose we are interested in the interaction between X and Y systems and observe

the sequences of variable x and y from the systems at t = 1, 2, ...T . The transfer entropy or

information flow from Y to X system is defined in the following way

TEY→X =
∑

p(xt+1, xt, yt) log
p(xt+1|xt, yt)
p(xt+1|xt)

, (1)

where xt = x(t) and yt = y(t), t = 1, 2, 3, ..., T represent the sequences of observations from

systems X and Y at time t. The p indicates the transition probability density function. The

joint probability density function p(xt+1, xt, yt) is the probability of three events, xt+1, xt, and

yt occurring in conjunction. The conditional probabilities p(xt+1|xt, yt) and p(xt+1|xt) are the

probabilities of some event xt+1 at time t + 1, given the occurrence of the return xt, yt and xt,

7In principle, we could have a neutral node whose aggregate information flow is exactly zero. But, the
probability of the occurrence of neutral node is almost surely zero.

8See Barnett et al. (2009) for the relationship between transfer entropy and Granger causality. They show
that transfer entropy is equivalent to Granger causality when variables are Gaussian.
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respectively, at time t. Transfer entropy is the weighted sum of joint probability of three states

where the weights are the log ratio of two conditional probabilities. If there is no information

flow from Y to X, then X and Y must be independent or p(xt+1|xt, yt) = p(xt+1|xt) so that

transfer entropy becomes zero by definition. Otherwise, Y is informative to predict the transition

probability of state i from time t to time t+ 1. This measure is essentially asymmetric in that

TEX→Y could be different from TEY→X .

Calculating symbolic transfer entropy (STE) involves the following two steps. First, we

generate the symbolic time series from the original return series data using the symbolization

technique.9 We define symbols by reordering the amplitude values of return time series xt and yt.

Given time delay τ and embedding dimension m, we rearrange the set of return sequences Xt =

{xt, xt+τ , ..., xt+(m−1)τ} in an ascending order {xt+(kt1−1)τ ≤ xt+(kt2−1)τ ≤ ... ≤ xt+(ktm−1)τ}.

This sequence of indexes is utilized to define a symbol x̂t ≡ (kt1, kt2, ..., ktm). For example, a set

of return sequences with embedding dimension 3 and time delay 1, {0.1, 0.4, 1.1}, is symbolized

into (1,2,3) according to the position of ascending amplitude. Another set of returns sequences

with different amplitudes but same ranks {-0.2, 0.3, 1.2} is identically symbolized into (1,2,3).

When we have equal amplitude in the set, we ensure that every Xt has unique mapping onto

one of the m! permutations by figuring out the relevant indexes.10 We can estimate the joint

and conditional probabilities of the sequence of permutation indices with the relative frequency

of symbols.

Second, we estimate transfer entropy using the symbolic time series data R̂it and R̂jt ,

STE
R̂it→R̂

j
t

=
∑

p(R̂jt+δ, R̂
j
t , R̂

i
t) log

p(R̂jt+δ|R̂
j
t , R̂

i
t)

p(R̂jt+δ|R̂it)
, (2)

where R̂it and R̂jt denote the symbolic time series at time t reconstructed with the embedding

dimension m and time delay τ from the return time series rit and rjt , respectively. The symbolic

transfer entropy (STE), STE
Rit→R

j
t
, can quantify the amount of information flow from Rit to Rjt .

9Refer to the concept of permutation entropy of Bandt and Pompe (2002) to concretely understand the
symbolization technique.

10Suppose xt+(kt1−1)τ is equal to xt+(kt2−1)τ . We write that xt+(kt1−1)τ is less than or equal to xt+(kt2−1)τ if
kt1 is less than kt2.
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3.2 the measure of pairwise and aggregate information flow asymmetry

Compared to binary Granger causality network by Billio et al. 2012, our directionality measure

has advantages over their methodology from the perspective of information flow. First, our

directionality measure provides the strength of directionality while binary Granger causality

network has three discrete levels of directionality of information flow from i to j, that is +1(i→

j), 0(bidirectional feedback), and -1(j → i). Even though there is feedback effect between two

institutions, it is possible that one institution weakly dominates the other in terms of influence.

Our measure can detect this asymmetric information flow while the binary network cannot.

Second, we can construct a network topology based on the strength of information flows which

surpasses a certain threshold that are estimated by surrogate test method.

We consider the pairwise information flow using the STE, defined as

DS
i→j = STE

Rit→R
j
t
− STE

Rjt→Rit
(3)

If the pairwise information flow DS
i→j has a positive value, Rit is a driving force for another

process Rjt , while if it has a negative values, Rjt drives Rit. We call i and j pairwise source and

sink each if the pairwise information flow, DS
i→j takes a positive value. In the case that Rit and

Rjt follow independent and identically distributed (IID) processes, that is,
p(Rjt+δ|R

j
t ,R

i
t)

p(Rjt+δ|R
i
t)

= 1, then

the STE, T
Rit→R

j
t
, is also zero. That is, there is no information flow when two processes are

random.

We define another information flow which accounts for the aggregate information flow from

one institution (industry sector) to all other institutions (industry sectors) in a system. Suppose

that there are N institutions in a system S. First, we define outward information flow from

institution i to all other institutions in S. For the brevity of expression, we define alternative

representation of symbolic transfer entropy: STE
Rit→R

j
t
≡ STEi→j .

IF outi =
1

N − 1

∑
i 6=j

STEi→j

The inward information flow to institution i from all other institutions is defined by the following

9



equation:

IF ini =
1

N − 1

∑
i 6=j

STEj→i

Then, we define the aggregate asymmetric information flow of an individual institution i by

taking the difference between outward information flow from the institution i and inward infor-

mation flow to the institution i.

AIFi =
IF outi − IF ini

1/N(N − 1)
∑

i

∑
j 6=i STEi→j

(4)

If the aggregate information flow (AAIF) of institution i is positive (negative), then the insti-

tution plays the role of information source (sink) of the system. The AAIF measure spans from

-1 to +1. Two boundary cases occur when all institutions in a system S form a star network

where only one institution i is connected with all other institutions j( 6= i) and all directions of

information flow from i to j are the same. The AIF of institution i takes the value of +1 (-1) in

case that the direction of information flow is outward from (inward to) i.

3.3 the measure of systemic risk

In nature, the movement of particles is produced when difference in potential energy between

any two places at the same space is great and the flow of the river was also streamed when

there is an asymmetry between inflows and outflows in any place as well. Likewise, when the

asymmetry of information inflows and outflows in the economic system increases, information

will flow more quickly, but when there is no difference between inflows and outflows in all sectors

the information flow is stagnant, i.e. the financial system have become significantly more stable.

Thus, the asymmetry of information flows between industrial sectors should play an important

role in terms of the diagnosis of market stability as well as the measuring systemic risk induced

from information flows on the economic network.

We focus on investigating the impact of both the strength and asymmetry of the information

flow on the level of systemic risk. To propose the novel measure for the systemic risk in the

whole economy system, two concepts that should be linked closely to measuring systemic risks,
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such as the interconnectedness and the asymmetry were used. These features in the economy

network constructed by the information flows will reflect the principal concept which is able to

explain the fundamental mechanism of the causes of systemic risk.

When an institution is independent of all other institutions, then both pairwise and aggregate

information flow of the institution is zero. This independent institution does not contribute to

the systemic risk because it cannot transmit the shock generated by one institution to other

institutions. The most stable system with the least likelihood of systemic events is a collection

of independent institutions without any source and sink in the system.

When aggregate information flow of an institution is zero, the institution marginally increase

systemic risk because it just plays the role of relay which transfer all shocks it absorbed from

other institutions to other institutions at the same amount thus it does not carry the risk of

failure itself. However, an institution i in a system S start increasing the system wide risk when

it plays the role of either aggregate source or aggregate sink. Systemic risk will increase as we

have more aggregate sources and aggregate sinks in the system. Let’s first consider the pair

of a global source and a global sink institutions. This pair can serve as a path through which

shocks can be transmitted. As we have more this kind of paths, it is more likely that the shocks

transmit further though the chain of relays like domino effect. If this chain finally ends up with

a ring, then we observe a feedback which will have a larger impact on the systemic risk.

We postulate that both the pair of source-source and sink-sink will have less impact on

systemic risk in that it is less likely to have a path through which shocks are transmitted in

comparison of source-sink pair. In the extreme case, the pair of source and source cannot

contribute to the systemic risk when the pairwise information flow of the two institutions is

zero. one idea for the relative contribution to systemic risk is that only source (sink) institutions

matter. Another we are not sure whether aggregate source contributes more than a sink to the

systemic risk. To investigate this, we draw a scatter plot to investigate the relationship between

the measure of systemic risk and asymmetric information flow. Figure 2 shows that there exist
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Figure 2: Convex relationship between the measure of systemic risk and asymmetric information
flow

a convex relationship between the measure of systemic risk and asymmetric information flow.

This convex relationship implies that the source and sink in a source-sink pair seem to have

equal contribution to systemic risk. This observation helps us to refine the definition of our

systemic risk measure.

When we have multiple source and sink institutions in a economic system, we have three

distinct types of connections: source-source, source-sink, and sink-sink connections. We consider

the source-source connection. We are interested in the pairwise information flow between two

source nodes i and j or PIFi→j = IFi→j − IFj→i. If the pairwise information flow between i

and j is close to zero, then it means that two source nodes behave independently. Regardless of

the types of connection between two nodes, we denote the independency between two nodes by

drawing no line between them. Instead one source node i act a source and the other j node act

a sink in a pair when the pairwise information flow is highly positive and vice versa. We draw

a directed line from i to j to illustrate the presence and direction of information flow.
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Figure 3: Evolution of the strength information flow and information asymmetry

We examine the time evolution of strength and asymmetry of information flow. The strength

of information flow is measured by the total summation of information among all nodes, SIF =∑
i

∑
j 6=i(IFi→j + IFj→i). The total asymmetry of information flow is measured by the total

summation of asymmetric information flow, AIF =
∑

i

∑
j 6=i(IFi→j − IFj→i).

Top (bottom) panel of Figure 3 illustrates the time evolution of the strength (asymmetry) of

information flow. The strength of information flow shows highly dynamic pattern, middle range

in the 1980s, low range in the 1990s, and high range in 2000s. The variation in the strength of

information flow seems to capture the main

The diagram above illustrates the importance of the source-sink information flow. We mate-

rialize the conceptual importance of source-source information flow with the following equation.

SR(t) =
1

N(N − 1)

∑
i

∑
j 6=i

(IFi→j + IFj→i) ·Wij (5)

where the weight is the product of asymmetric information flow of node i and j and the difference

between two pairwise information flow or Wij = |AIFi||AIFj |(IFi→j − IFj→i). The asymmetric

13



information flow in the definition is distinct from the the definition of asymmetric informa-

tion flow defined by Equation 4. We use the following equation to define a new asymmetric

information flow

AIFi =

∑
j 6=i IFi→j − IFj→i∑

i

∑
j 6=i IFi→j

+ 1 (6)

4 Empirical analysis

4.1 Data

We use daily returns of public stocks between Jan 1 1980 and Dec 31 2011 to construct value

weighted index returns for 48 industrial sectors adopting Fama and French (1997) categoriza-

tion for the following analysis. Financial sectors is composed of banking(industry group #44),

insurance(# 45), and trading industries(# 47). We denote all other manufacturing and service

industries except for financial sectors as real economic sectors. To investigate the temporal evo-

lution of systemic risk, we constructed a sequence of network’s from the moving trading days

and examined the temporal evolution of network structure. We segmented the 48 industry sector

time series into 1-year windows moving at 1 day and then calculated the network structure of

information flows created using STE method. The created network for each sub-period is a set

of significance network connections in terms of the path of information flow, which can be shown

as level of systemic risk induced by network topology over time.

We retrieve macroeconomic variables with Federal Reserve Economic Data (FRED) at Fed-

eral Reserve Bank of Saint Louis: three month treasury bill rate, ten year treasury bond rate,

London interbank offered rate (LIBOR), S&P 500 index returns of daily frequency and unem-

ployment rate of monthly frequency.

Table I reports the descriptive statistics of systemic risk measure, three month treasury bill,

London Interbank Offered Rate(LIBOR), S&P 500 index returns, unemployment rate.

14



Table I: Descriptive Statistics

We provide the descriptive statistics of systemic risk measure and macroeconomic variables we link to the systemic
risk in the following analyses. Macroeconomic variables include three month treasury rate, London interbank offered
rate (LIBOR), the return and volatility of S&P 500 index of daily frequency, and unemployment rate of monthly
frequency.

Mean Median Std. Dev. Max Min Mean Median Std. Dev. Max Min

Panel A: Systemic risk Panel B: Unemployment rate

1982-1987 103.03 102.14 5.97 122.61 91.50 7.97 7.40 1.49 10.80 5.70

1988-1993 102.51 100.57 10.28 131.11 81.18 6.25 6.50 0.88 7.80 5.00

1994-1999 89.65 88.95 5.26 105.59 78.50 5.10 5.15 0.69 6.60 4.00

2000-2005 100.75 99.77 13.45 132.58 79.24 5.15 5.40 0.72 6.20 3.90

2006-2011 122.20 122.19 11.53 147.88 97.87 7.31 8.70 2.29 10.00 4.40

Panel C: Three month T-bill rate Panel D: London Interbank Offered Rate

1982-1987 8.30 8.10 2.20 15.49 5.18 7.01 7.00 0.73 9.31 5.63

1988-1993 5.86 6.00 2.08 9.45 2.67 6.44 6.88 2.32 10.63 3.13

1994-1999 5.01 5.13 0.56 6.07 2.98 5.50 5.63 0.58 6.50 3.25

2000-2005 2.79 1.99 1.79 6.42 0.81 3.08 2.19 1.92 6.87 1.00

2006-2011 1.84 0.22 2.10 5.19 0.00 2.47 1.45 2.18 5.73 0.25

Panel C: Return of S&P500 index Panel F: Volatility of S&P500 index

1982-1987 0.13 0.16 0.15 0.46 -0.26 9.08E-05 7.72E-05 6.80E-05 4.56E-04 4.00E-05

1988-1993 0.08 0.09 0.11 0.30 -0.26 1.26E-04 7.62E-05 1.42E-04 4.92E-04 2.94E-05

1994-1999 0.18 0.19 0.10 0.40 -0.04 8.27E-05 5.36E-05 5.80E-05 2.01E-04 2.24E-05

2000-2005 -0.02 0.05 0.17 0.36 -0.42 1.49E-04 1.68E-04 7.76E-05 3.01E-04 4.11E-05

2006-2011 0.01 0.08 0.22 0.52 -0.67 2.22E-04 1.31E-04 2.45E-04 8.29E-04 3.46E-05
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Figure 4: Time evolution of systemic risk measure

4.2 Evolution of systemic risk

Figure 4 illustrates the time evolution of systemic risk with our measure. It is easily seen that

the magnitude of systemic risk waxes and wanes over time. The level of systemic risk moderately

oscillates in 1980s until it climbs up to a peak in period of Black Monday in 1987. Systemic risk

level climbs down in the early 1990s to reach the lowest level in 1994 and subsequently maintains

much lower level in late 1990s until it bumps up to a peak which seemingly matches with Russian

and Asian crisis in late 1990s. More interestingly, our systemic risk measure indicates that there

is a turning point in early 2000s in that systemic risk measure continued to grow after 2001 until

it reached a peak in 2008 while it keeps falling after 1997 Russian fiscal crisis until 2001. The

height of systemic risk maintains the highest level during 2008 and 2010.

The graph above shows that the sharp increase in our systemic risk measure coincides with

several identified crisis periods. Systemic risk reaches local peaks around 1987 LTCM crisis, 1997

Russian crisis, 2008 financial crisis. These matches between crisis periods and high systemic risk

levels hint the good quality of our measure to detect real crises in the US economy.
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4.3 Systemic risk and macroeconomic variables

We examine the relationship between our systemic risk measure and some macroeconomic vari-

ables, which are categorized into economic and financial ones. Financial macroeconomic variables

include three month treasury bill rate, ten year treasury bond rate, and LIBOR rate, and the

TED spread, and the return and volatility of S&P 500 index. Economic macroeconomic vari-

able encompasses monthly unemployment rate. We run the simple regression of systemic risk

measure on each macroeconomic variable. The estimation model is followed:

SRt = α+ β ·macroeconomicvariable+ εt

Table II presents the results of regressing systemic risk measure on three month treasury bill

rate and LIBOR separately. The analysis start at 1982. Left panel of Table II shows that there

exists systematic change in the relationship between systemic risk and three month treasury

rate. Systemic risk and T-bill rate are negatively correlated in 2000s while they are positively

correlated in 1980s and 1990s. Especially, there are two subperiods when the relationship be-

tween the two are more significant than other periods: 1988-1993 and 2000-2005. The beta

coefficient and t-statistics in 1988-1993 period are 0.754 and 44.405 while those in 2000-2005

period are -0.765 and -45.957. Especially, the three month T-bill continued to fall after 9.11 in

2001 to boost the US economy. This implies that the systemic risk might be elevated due to the

continuous fall of short term interest rate or cheap credit.

Right panel of Table II also shows that systemic risk measure and LIBOR are negatively

correlated in 2000s while they are positively correlated in 1980s and 1990s, which is similar to

the relationship between systemic risk and T-bill. Especially, there are two subperiods when the

relationship between the two are more significant than other periods: 1988-1993 and 2000-2005.

The beta coefficient and t-statistics in 1988-1993 period are 0.776 and 47.486 while those in

2000-2005 period are -0.754 and -44.105.

Table III presents the results of regressing systemic risk measure on the return and volatility
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Table II: The relationship between the measure of systemic risk and short term interest rates

We examine the relationship between our systemic risk measure and short term interest rates: three month treasury
bill rate and LIBOR over different periods of time. The estimation model is followed:

SRt = α+ β · short term interest rate+ εt

Variable: 3 Month T-bill rate Variable: LIBOR

Periods observation beta t-statistic R2 observation beta t-statistic R2

1982-1987 1496 0.402 16.97 0.16 498 0.489 12.48 0.24

1988-1993 1501 0.754 44.41 0.57 1493 0.776 47.49 0.60

1994-1999 1500 0.155 6.09 0.02 1488 0.284 11.43 0.08

2000-2005 1497 -0.765 45.96 0.59 1479 -0.754 -44.11 0.57

2006-2011 1498 -0.420 17.90 0.18 1482 -0.356 -14.66 0.13

of S&P500 index separately. Left panel of Table III shows that there exists systematic change

in the relationship between systemic risk and the return of S&P500 index. They are positively

correlated before the financial crisis period while they are negatively correlated between 2006

and 2011. This positive relation implies that the increase in systemic risk of total economy has

been compensated by higher return in equity index. However, the increase in systemic risk is

penalized by lower return in a really big crisis. Right panel of Table III also shows that systemic

risk measure and volatility of S&P500 index are positively correlated all times except one period

between 2000 and 2005. It is really interesting that equity index volatility looks to be linearly

independent of systemic risk measure while those two are a measure of risk, which means that

they should be related in principle. Right panel of Table IV also display that systemic risk

measure and TED spread, which is defined by the difference between the 3 month LIBOR rate

and the 3 month Treasury rate, are positively correlated all time except one period from 2000

to 2005. In particular, although TED spread, which is a gauge deemed credit risk in the general

economy, show a lower value during the period from 2000 to 2005, the systemic risk flourish

continuously in same period, i.e. they are negatively correlated. It is quite interesting that we

are not aware of fundamental risk relating to subprime crisis with a traditional measure.

In Table IV, we investigate the relationship between systemic risk and unemployment rate
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Table III: The relationship between the measure of systemic risk and equity market index

We examine the relationship between our systemic risk measure and equity market index or the return and volatility
of S&P500 index over different periods of time. The estimation model is followed:

SRt = α+ β · equity index+ εt

Variable: index return Variable: index volatility

Periods observation beta t-statistic R2 observation beta t-statistic R2

1982-1987 1517 -0.032 -1.24 0.00 1517 0.298 12.15 0.09

1988-1993 1518 0.115 4.49 0.01 1518 0.218 8.70 0.05

1994-1999 1515 0.583 27.93 0.34 1515 0.577 27.45 0.33

2000-2005 1508 0.264 10.63 0.07 1508 -0.019 -0.75 0.00

2006-2011 1509 -0.320 -13.12 0.10 1509 0.448 19.48 0.20

and TED spread in the US economy, respectively. In left panel of Table IV there exists system-

atic change in the relationship between systemic risk and the return of S&P500 index. They

are positively correlated before the financial crisis period while they are negatively correlated

between 2006 and 2011. This positive relation implies that the increase in systemic risk of total

economy has been compensated by higher return in equity index. However, the increase in sys-

temic risk is penalized by lower return in a really big crisis. Systemic risk measure and volatility

of S&P500 index are positively correlated all times except one period between 2000 and 2005.

It is really interesting that equity index volatility looks to be linearly independent of systemic

risk measure while those two are a measure of risk, which means that they should be related in

principle.

5 Conclusion

We develop a measure of systemic risk based on the strength and asymmetry of information

flow measured by symbolic transfer entropy (STE), which incorporates the contribution from

both financial and real sectors. When we investigate the evolution of systemic risk in the United

States using size weighted index return of 48 industries based on Fama and French 1997, our

measure coincides with the financial crisis between 2007 and 2009. Our systemic risk measure
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Table IV: The relationship between the measure of systemic risk and unemployment rate

We examine the relationship between our systemic risk measure and unemployment rate over different periods of
time. The estimation model is followed:

SRt = α+ β · unemployment rate+ εt

Variable: unemployment rate Variable: TED spread

Periods observation beta t-statistic R2 observation beta t-statistic R2

1982-1987 45 0.657 5.71 0.43 498 0.54 14.01 0.29

1988-1993 47 -0.631 -5.46 0.40 1493 0.67 34.54 0.45

1994-1999 46 -0.657 -5.78 0.43 1488 0.40 16.87 0.16

2000-2005 46 0.782 8.31 0.61 1479 -0.47 -20.08 0.22

2006-2011 47 0.315 2.23 0.10 1482 0.16 6.06 0.024

indicates that there is a turning point in 2001 in that systemic risk has built up since 2001 until

it reaches a peak in 2008.

We investigate the relationship between the our systemic risk measure and macroeconomic

variables. Three month treasury bill rate, LIBOR rate, and Federal Funds rate are positively

associated with systemic risk measure in 1980s and 1990s while they are negatively associated

in 2000s. This implies that the systemic risk might be elevated due to the continuous fall of

short term interest rate or cheap credit. It is interesting that the market risk measured by the

volatility of S&P 500 index and the TED spread is positively related to all other subperiods

except for 2000-2005 subperiod when systemic risk kept rising while short term interest rate

continued to fall. Unemployment rate is negatively related to systemic risk in 1980s and 1990s

whereas unemployment rate is positively related to systemic risk in 2000s, which is the opposite

pattern to the relationship between short term rate and systemic risk.
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Kahle, Kathleen M., and René M. Stulz, 2011, Financial Policies, Investment, and the Financial

Crisis: Impaired Credit Channel or Diminished Demand for Capital? Fisher College of

Business Working Paper No. 2011-3

Lang, Larry H.P. and René M. Stulz, 1992, Contagion and competitive intra-industry effects

of bankruptcy announcements, Journal of Financial Economics 32, 45-60.

Lehar, Alfred, 2005, Measuring systemic risk: A risk management approach, Journal of Banking

and Finance 29, 2577-2603,

Schreiber, Thomas, 2000, Measuring information transfer, Physical Review Letters 85, .
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