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Abstract

We find a closed-form formula for valuing a time-switch option where its underlying asset is affected
by stochastically changing market environments, and apply it to the valuation of other qualitative
options such as corridor options and options in foreign exchange markets. The stochastic market
environments are modeled as a Markov regime-switching process. This analytic formula provides us a
rapid and accurate valuation scheme for valuing qualitative options with stochastic volatility.
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1 Introduction

It is well known that the volatility of financial securities, such as stocks and bonds, tends
to change over time depending on market environments of economic, political factors and
business cycle. Many researchers have studied the problem of valuing options when the
volatility of underlying asset is stochastic and there have been a number of important results
(e.g., Hull and White [11], Wiggins [17], Stein and Stein [15], Heston [10]). Most of such
researchers have believed that stochastic volatility models can provide us some explanations
for smile feature of Black-Scholes implied volatility(called as a volatility smile). However,
there is an disadvantage of difficulty in handling when one applies stochastic volatility models
to the valuation of options.

By the way, in 1995 Pechtl [14] classified the types of options into quantitative and qual-
itative. Quantitative option is an option of classical type and its payout is represented as
a limit function of linear combinations of that of binary options. Different from this, the
payout of qualitative option is determined by the number of time units for which the un-
derlying asset process stays in a prefixed price interval. Qualitative options are exotic and
path-dependent, therefore it is very difficult to get a closed-form formula for their values.
Representative examples of such qualitative options are a time-switch option and a corridor
option. Pechtl [14] obtained a closed-form formula for the value of a time-switch option, con-
sidering non-stochastic volatility model. Also Fusai [7] provided a semi-analytic formula for
valuing corridor options where the underlying asset was evolved by constant volatility.

This paper is focused on providing a closed-form formula for valuing time-switch option
under stochastic market environments and applying it to valuing other qualitative options.
We model the stochastic market environments by assuming that the drift and volatility terms
of the underlying asset process are governed by a Markov regime-switching process, which
was firstly introduced by Hamilton [9].

Regime-switching models are planned to capture discrete changes in the economic events
that influence financial time series. Recently several researches using these models have
been fulfilled. For instance, So et al. [16] generalized usual stochastic volatility model to
encompass Markov regime-switching properties, and Bollen et al. [2] investigated the ability
of regime-switching models to capture the dynamics of foreign exchange rates. Fuh et al. [6]
provided a closed-form formula for the value of a European call option and showed several
interesting empirical investigations, which told us that regime-switching models can produce
the three empirical phenomena, asymmetric leptokurtic features, volatility smile and volatility
clustering. By using the moment-generating function of the concept of occupation time,
Edwards [5] suggested a general way to incorporate regime-switching models in financial
models. Duan et al. [4] established a class of GARCH option models under regime switching.
Furthermore, there exist a number of researches for option pricing when the fluctuations of
underlying asset price are based on a notion of inside information (see Naik [13], Buffington
and Elliott [3], Duan et al. [4], Edwards [5], and Guo [8]).

On the other hand, some numerical methods for valuing options with regime-switching
volatility have been developed. In particular, Bollen [1] developed a lattice method(called
pentanomial tree) in order to value both European and American types of options where their
underlying assets varied by a Markov regime-switching process. Jang and Koo [12] provided a
way that one can approximate analytically the value of American puts with regime-switching
volatility. Using it, they derived some interesting features of early exercise boundaries of
American puts.
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Most of such exiting literatures have considered only the valuation of quantitative options,
not qualitative options. As far as we know, there is not any result which provides us an
analytic valuation formula for qualitative options with stochastic volatility. The importance
of this paper stems from this point of view.

The rest of this paper proceeds as follows. Section 2 explains an option pricing model
with regime-switching volatility. Section 3 provides us a closed-form formula for valuing a
time-switch option. In Section 4, we give a numerical implementation. Some applications to
other qualitative options are presented in Section 5. Finally, Section 6 concludes. All proofs
are in Appendix.

2 The Model

Throughout the paper, the market is assumed to be frictionless: there are no transaction
costs, no taxes, no restrictions on short sales and no difference between borrowing and lending
rates. Suppose that the market has one riskless asset(bond or cash account) and one risky
asset(stock). Also, we consider that all activities occur on a filtered complete probability
space (Ω,F , {Ft}t≥0, P ), where {Ft} is the augmentation of a filtration generated by one-
dimensional Brownian motion Bt and two Poisson processes ϕH(t), ϕL(t) on [0,∞). Two
Poisson processes are independent of each other and independent of Bt.

We assume that the underlying asset(stock) price dynamics St satisfies the following evo-
lution equation:

dSt = µ(t)Stdt + σ(t)StdBt, (2.1)

where µ(·) and σ(·) are the drift and volatility of the stock process, and both change according
to a continuous-time Markov chain.

The Markov chain is independent of Bt and moves between two states. We call such
states high(“H”) and low(“L”) regimes. The corresponding pairs of drifts and volatilities are
denoted by (µH , σH) and (µL, σL), respectively. Define the intensity λi(i ∈ {H, L}) of Poisson
process ϕi as the rate of leaving regime i. Namely, the random time τi of the leaving regime
i has an exponential distribution with intensity λi, thus satisfies the following:

P (τi > t) = e−λit, i ∈ {H, L}.
Then the transition density over a time interval [s, s + t], Pij(t) = P{σs+t = σj |σs = σi}, is
given by

Pii(t) =
λi

λi + λj
e−(λi+λj)t +

λj

λi + λj
= 1− Pij(t),

where i, j ∈ {H, L}, and s, t ≥ 0. For more details, see Edwards [5].
Since the market is enable to be completed by the arguments in Guo [8], we assume that

there is a risk-neutral measure P̃ . Applying Girsanov’s theorem to Equation (2.1), we can
change it to be

dSt = rStdt + σ(t)StdB̃t, (2.2)

where r is a riskfree interest rate and B̃t is a standard Brownian motion under P̃ . By using
usual calculus, the equation (2.2) is solved as follows,

St = S0 exp
{

rt− 1
2

∫ t

0
σ(s)2ds +

∫ t

0
σ(s)dB̃s

}
. (2.3)
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Figure 1: Payout profile of a time-switch option

3 The Valuation of a Time-Switch Option

As mentioned in Pechtl [14], a time-switch option has a ‘qualitative’ property, where
writer’s payment is determined by multiplying a fixed amount by the number of days during
the period that the price of the underlying asset goes up above a prefixed barrier K. Figure
1 depicts its payout profile. The aim of this paper is to provide a closed-form formula, which
represents the price of the time-switch option on the stock with stochastic volatility described
in the previous section.

Firstly, a random variable should be defined by

It :=
{

1, if σ(t) = σH ,
0, if σ(t) = σL.

Also, Tt denotes the occupation time that the stock process is in regime H from time 0 till
time t, that is,

Tt :=
∫ t

0
Isds.

Following the argument in Pechtl [14], the initial value of the time-switch option can be
written as

e−rT Ẽ
[
A

∫ T

0
1{St>K}dt

]
, (3.1)

where T is the maturity time of the option, A a fixed amount, K a prefixed barrier, and 1{·}
an indicator function. Ẽ implies the expectation with respect to the probability P̃ .
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Applying Fubini’s theorem and the relationship of (2.3), (3.1) is converted into

e−rT A

∫ T

0
Ẽ

[
1{St>K}

]
dt

= e−rT A

∫ T

0
P̃{St > K}dt

= e−rT A

∫ T

0
P̃

{
1
2

∫ t

0
σ(s)2ds−

∫ t

0
σ(s)dB̃s < ln

S0

K
+ rt

}
dt

= e−rT A

∫ T

0
P̃

{
1
2

(
(σ2

H − σ2
L)Tt + σ2

Lt
)− (σH − σL)

∫ t

0
IsdB̃s − σLB̃t < ln

S0

K
+ rt

}
dt.

(3.2)

In order to calculate the probability in the last term of (3.2), we verify the properties of

X(t) :=
∫ t

0
IsdB̃s.

General properties of Ito integrals tell us that the mean of X(t) is zero and the variance of
X(t) is Ẽ[Tt]. If Tt is deterministic for time t, we can obtain the following lemma.:

Lemma 3.1. Given 0 ≤ Tt = k ≤ t, X(t) is normally distributed with mean zero and variance
k. Furthermore, this is true even though k is a deterministic function with respect to t.

Proof. See Appendix A.

In order to calculate the probability in the last term of (3.2), we need to get the correlation
between X(t) and B̃t.

Lemma 3.2. Given 0 ≤ Tt = k ≤ t, the correlation between X(t) and B̃t is

√
k

t
.

Proof. See Appendix B.

The following Lemma is well-known, hence we use it without any proof.

Lemma 3.3. Let Y1 and Y2 be standard normal variables with correlation coefficient ρ. Then
for arbitrary constants a, b, c, d and k,

E[ecY1+dY21{aY1+bY2≥k}] = e(c2+d2+2ρcd)/2N
(

ac + bd + ρ(ad + bc)− k√
a2 + b2 + 2ρab

)
,

where N denotes a cumulative standard normal distribution.
In particular,

P {aY1 + bY2 ≤ k} = E[1{aY1+bY2≤k}] = N
(

k√
a2 + b2 + 2ρab

)
.

The probability density function(PDF) of the occupation time Tt has discovered by Naik
[13], Guo [8] and Fuh [6], thus we can reach our main result.
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Theorem 3.4. Let vi(T ; K, A)(i ∈ {H,L}) be the value of a time-switch option in regime i
with maturity T , fixed multiplier A and prefixed barrier K, then it satisfies the following:

vi(T ; K,A) = e−rT Ẽ

[
A

∫ T

0
1{St>K}dt

∣∣∣σ(0) = σi

]

= e−rT A

∫ T

0

{∫ t

0
N (d1(t, u))fi(t, u)du

+ δL(i)N (d2(t))e−λLt + δH(i)N (d3(t))e−λH t
}

dt,

(3.3)

where N is a cumulative standard normal distribution. Here,

d1(t, u) :=
ln S0/K + rt− 1

2(σ2
H − σ2

L)u− 1
2σ2

Lt√
(σH − σL)2u + σ2

Lt + 2(σH − σL)σLu
,

d2(t) := d1(t, 0) =
ln S0/K + rt− 1

2σ2
Lt

σL

√
t

,

d3(t) := d1(t, t) =
lnS0/K + rt− 1

2σ2
Ht

σH

√
t

,

δi(j) :=
{

1, if i = j,
0, if i 6= j.

Also fi(t, u) is a PDF of Tt where σ(0) = σi such that

fH(t, u) := e−λL(t−u)−λHu

((
λHλLu

t− u

)1/2

J−1

(
2(λHλLu(t− u))1/2

)

+ λHJ0

(
2(λHλLu(t− u))1/2

) )
,

fL(t, u) := e−λltδ0(u) + e−λL(t−u)−λHu

( (
λHλL(t− u)

u

)1/2

J1

(
2(λHλLu(t− u))1/2

)

+ λLJ0

(
2(λHλLu(t− u))1/2

))
,

where Ja(z) is the modified Bessel function defined by

Ja(z) :=
(z

2

)a
∞∑

n=0

(z/2)2n

n!Γ(a + n + 1)
.

Proof. See Appendix C.

The analytic formula of (3.3) contains a double integration, but it can be calculated by
using a numerical approximation scheme such as trapezoidal rule and Gaussian quadrature
rule. Nowadays there are many programming languages, for example mathematica, with a
package containing functions which help us to calculate such integrals directly. In Section 4,
we show numerical results obtained by a Gaussian quadrature rule.
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parameters Monte-Carlo Analytic
Benchmark 2000 trials

S σH λH vH vL vH vL
vH vL

100 0.26 1.0 1.3299 1.0025 1.2944 0.9651 1.3281 1.0083
100 0.26 2.0 1.3071 1.0024 1.3140 0.9874 1.2927 1.0041
100 0.40 1.0 1.4904 1.0350 1.5502 1.0539 1.4923 1.0327
100 0.40 2.0 1.4531 1.0278 1.4295 0.9763 1.4620 1.0288
110 0.26 1.0 2.5365 2.7864 2.5913 2.7934 2.5367 2.7856
110 0.26 2.0 2.5653 2.7933 2.5482 2.7558 2.5770 2.7918
110 0.40 1.0 2.3689 2.7533 2.3747 2.7418 2.3633 2.7489
110 0.40 2.0 2.4099 2.7594 2.4079 2.7578 2.4154 2.7574
120 0.26 1.0 3.5943 4.1627 3.5706 4.1436 3.6014 4.1594
120 0.26 2.0 3.6835 4.1726 3.6975 4.2085 3.6898 4.1715
120 0.40 1.0 3.1633 4.0735 3.1366 4.0696 3.1601 4.0803
120 0.40 2.0 3.2690 4.0955 3.3557 4.0894 3.2746 4.0975
CPU time(sec) - 140 8

Table 1: The values of time-swith options obtained by the analytic solution in Theorem
3.4 and the Monte-Carlo method by Bollen [1]. Default parameters are A = 5, K = 110,
T = 1, σL = 0.1313, r = 0.06, and λL = 0.5. Initial stock prices S, high-regime volatilities σH and
high-regime intensities λH are displayed in 1-3 columns. The values in columns 4-5(Benchmark) are
obtained by the Monte-Carlo method with 365 time steps and 50000 trials and the values in column 6-7
are obtained by the Monte-Carlo method with 365 time steps and 2000 trials. Columns 8-9 represent
the values obtained by the analytic formula. CPU time is the mean time required to compute the
values for each parameter. All routines are programmed using mathematica language and run on a
1.2-GHz Athlon computer.

4 Implementation

As already mentioned in the previous section, the closed-from of the value of the time-
switch option contains a double integration. Also it seems that the integrand is very compli-
cated. But we found that this integration could be easily approximated by various numerical
methods, such as Gaussian quadrature rules, for wide ranges of parameter spaces.

In Table 1 we presented the values of time-switch options obtained by the analytic formula
in Theorem 3.4 and the Monte-Carlo method used in Bollen [1]. We use default parameters
of A = 5, K = 110, T = 1, σL = 0.1313, r = 0.06, and λL = 0.5. Note that the parameters
in rows 1 − 4, 5 − 8, 9 − 12 represent the values of out-of-the-money , at-the-money, and
in-the-money options, respectively. Compared with the Monte-Carlo method, our analytic
formula provides us a more rapid valuation technique. The table shows that the results by
the Monte-Carlo method with 2000 trials are calculated in 140 seconds on the average, while
those by the analytic solution are calculated only in 8 seconds. Nevertheless, the analytic
solution provides us more accurate results than the Monte-Carlo method, considering the
‘Benchmark’ cases as exact values of the options.
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5 Applications to Other Qualitative Options

Theorem 3.4 provides us a useful tool for valuing other qualitative options and we give
some examples in this section.

We call the option described in Section 3 an up-and-in time-switch(UITS) option, because
its payout is determined by the number of days when the price of the underlying stock goes
up above a fixed level. On the contrary, a down-and-in time-switch(DITS) option is an option
which its payout is determined by the number of days when the price of the underlying stock
goes down under a fixed level. The value of DITS options can be easily formulated by using
Theorem 3.4. We present their values in the following way.:

Corollary 5.1. The value v̄i(T ; K,A) of a DITS time-switch option in regime i ∈ {H, L}
with maturity T , prefixed barrier K and fixed amount multiplier A, is written by

v̄i(T ;K,A) = e−rT Ẽ

[
A

∫ T

0
1{St<K}dt

∣∣∣σ(0) = σi

]
,

and vi(T ;K,A) and v̄i(T ;K, A) satisfy the relationship

vi(T ; K, A) + v̄i(K;T, A) = e−rT AT,

where vi(T ; K, A) is the corresponding UITS option.

On the other hand, a corridor option is an option whose payout is the product of a fixed
amount A and the total time(days) such that the price of the underlying asset stays in a
certain range, called a corridor. Pechtl [14] and Fusai [7] investigated corridor options where
the underlying stock process is generated by a geometric Brownian motion with constant drift
and volatility.

For the case where the underlying stock process is under the regime-switching environment
described in Section 3, the value of a corridor option with maturity T , fixed amount multiplier
A and corridor [K1,K2] can be represented as

e−rT Ẽ
[
A

∫ T

0
1{K1<St<K2}dt

∣∣∣σ(0) = σi

]

= e−rT A

(
Ẽ

[ ∫ T

0
1{St>K1}dt

∣∣∣σ(0) = σi

]
− Ẽ

[ ∫ T

0
1{St>K2}dt

∣∣∣σ(0) = σi

])

= vi(T ; K1, A)− vi(T ; K2, A),

where vi represents the value of the UITS option described in Theorem 3.4. Therefore, we
observe that the value of corridor option can be interpreted as the difference of the values of
two UITS time-switch options with barriers different from each other.

The arguments described in the previous section is applicable to qualitative options in
foreign exchange markets. For this case, we have to think of underlying asset price process
as a foreign exchange rate Xt satisfying, under a risk-neutral measure P̃ ,

dXt = (rd − rf )Xtdt + σ(t)XtdB̃t.

for a standard Brownian motion B̃t. Here, rd and rf are domestic and foreign risk-free interest
rates, respectively. So we can obtain the values of this type of qualitative option by putting
(rd − rf ) in the place of the risk-free interest rate r in Theorem 3.4.
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6 Conclusion

We found a closed-form formula for valuing a time-switch option where the underlying
asset process was affected by stochastically changing market environments, and applied it to
the valuation of other qualitative options such as corridor options and options in currency
markets. The stochastic market environments were modeled as a two-state regime-switching
process. We showed that the analytic formula gave us a rapid and accurate valuation method
for valuing qualitative options under stochastic market environments.
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Appendix

A Proof of Lemma 3.1

We must show that

Ẽ [exp{uX(t)}|Tt = k] = exp
{

1
2
u2k

}
, for all u ∈ R. (A.1)

First, let

ζt(I) =
∫ t

0
IsdB̃s − 1

2

∫ t

0
I2
s ds.

If Novikov’s condition of Ẽ[exp{1
2

∫ t

0
I2
s ds}] < ∞ is satisfied, the process exp{ζt(I)} is a

martingale. Since uIt is a bounded simple function, the Novikov’s condition is satisfied, so
exp{ζt(uI)} is a martingale for given Tt = k. Therefore,

Ẽ[exp{ζt(uI)}|Tt = k] = Ẽ

[
exp

{∫ t

0
uIsdB̃s − 1

2

∫ t

0
(uIs)2ds

}
|Tt = k

]

= Ẽ[exp{
∫ t

0
uIsdB̃s − 1

2
u2k}|Tt = k]

= Ẽ[exp{uXt − 1
2
u2k}|Tt = k] = 1.

This implies (A.1).
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B Proof of Lemma 3.2

If T (t) = k, the covariance of X(t) and B̃(t) is

Ẽ[X(t)B̃t|Tt = k] = Ẽ[
∫ t

0
IsdB̃sB̃t|Tt = k] = Ẽ[ lim

n→∞

n∑

i=0

Iti(B̃ti+1 − B̃ti)B̃tn |Tt = k]

= lim
n→∞

n∑

i=0

(
Ẽ[ItiB̃ti+1B̃tn |Tt = k]− Ẽ[ItiB̃tiB̃tn |Tt = k]

)

= lim
n→∞

n∑

i=0

(
Ẽ[Iti |Tt = k]ti+1 − Ẽ[Iti |Tt = k]ti

)

= lim
n→∞

n∑

i=0

Ẽ[Iti(ti+1 − ti)|Tt = k]

= Ẽ[ lim
n→∞

n∑

i=0

Iti(ti+1 − ti)|Tt = k]

= Ẽ[
∫ t

0
Isds|Tt = k] = k

Hence, the correlation coefficient ρ is calculated as

ρ =
Ẽ[X(t)B̃t|Tt = k]√
V ar(X(t))V ar(B̃t)

=
k√
kt

=

√
k

t
.

C Proof of Theorem 3.4

By Equation (3.2) and Theorem 3.1, the value of the time-switch option satisfies

vi(T ; K,A)

= e−rT Ẽ[A
∫ T

0
1{St>K}dt

∣∣∣σ(0) = σi]

= e−rT A

∫ T

0

[∫ t

0
P̃

{1
2
(σ2

H − σ2
L)u +

1
2
σ2

Lt− (σH − σL)
√

uY1 − σL

√
tY2 < ln

S0

K
+ rt

Tt = u
}

fi(t, u)du

+ P̃
{1

2
σ2

Lt− σL

√
tY2 < ln

S0

K
+ rt

Tt = 0
}

P̃{Tt = 0}

+ P̃
{1

2
(σ2

H − σ2
L)t +

1
2
σ2

Lt− (σH − σL)
√

tY1 − σL

√
tY2 < ln

S0

K
+ rt

Tt = t
}

P̃{Tt = t}
]
dt,

where Y1 and Y2 are two correlated standard normal random variables with correlation ρ.
Combined Lemma 3.2 and 3.3 with the results about the PDF of Tt in Guo [8] and Fuh [6],
we obtain the following.:

vi(T ; K, A) = e−rT Ẽ

[
A

∫ T

0
1{St>K}dt

∣∣∣σ(0) = σi

]

= e−rT A

∫ T

0

{∫ t

0
N (d1(t, u))fi(t, u)du + δL(i)N (d2(t))e−λLt + δH(i)N (d3(t))e−λH t

}
dt,
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Here,
fi(t, u) = P̃{Tt ∈ u|σ(0) = σi}.

The proof is completed.
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